Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/instrumental-methods-of-chemical-analysis/descriptif_4956722
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4956722

Instrumental Methods of Chemical Analysis, 1st ed. 2023

Langue : Anglais

Auteur :

This textbook describes the theory underlying each instrumental procedure and applications of all instrumental methods. It comprehensively covers the instrumental methods of chemical analysis, chromatography, thermal methods of chemical analysis, electrochemical methods, and instrumental methods of analysis of inorganic compounds. These include thermogravimetric analysis, differential thermal analysis, thermometric titrations, and some miscellaneous thermal methods like derivative thermogravimetric analysis, thermobarography, differential scanning calorimetry, thermomechanical analysis, and electric thermal analysis, flame photometry, fluorimetry and phosphorimetry, nephelometric and turbidimetric techniques, refractory and interferometry, and X-ray methods. Each chapter consists a set of problems to aid self-learning. This textbook is highly useful for graduate and postgraduate students on chemistry and its allied fields. It can also be used as a quick reference material by professionals working in the various fields of chemistry and material science.

Instrumental Methods of Chemical Analysis


V.K. Ahluwalia

Visiting Professor

Dr. B.R. Ambedkar Center for Biomedical Research,

University of Delhi


Ane Books Pvt. Ltd.

New Delhi ♦ Chennai


Contents

Part I: Introduction

 

1.

 

Introduction

to Instrumental Methods of Chemical Analysis

1

 

1.1

Chemical Analysis

3

 

1.2

Instrumental Methods—Their Classification

3

 

1.3

Selection of the Instrumental Method

5

 

1.4

Application of Instrumental Methods/ Techniques

5

 

 

1.4.1      Chromatographic Methods

5

 

 

1.4.2      Thermal Methods

5

 

 

1.4.3      Electrochemical Methods

5

 

 

1.4.4      Instrumental Methods for the Determination of the

 

 

 

structure of Organic Compounds

6

 

 

1.4.5      Instrumental Methods of Analysis of Inorganic

 

 

 

Compounds

8

 

 

1.4.6      Miscellaneous Instrumental Methods

9

 

 

Part II: Chromatographic Methods

 

2.

 

Chromatography

13

 

2.1

Introduction

13

 

2.2

Principle of Chromatographic Separation

13

 

2.3

Types of Chromatography

14

 

 

2.3.1        Partition Chromatography

14

 

 

2.3.2        Adsorption Chromatography

15

 

 

2.3.3        Exclusion Chromatography

15

 

 

2.3.4        Ion-exchange Chromatography

15

 

 

Exercises 16

 

3.

Paper Chromatography

17

 

3.1

Circular (or Radical) Paper Chromatography

17

 

3.2

Ascending Paper Chromatography

20

 

3.3

Descending Paper Chromatography

20

 

3.4

Paper Chromatographic Ceparations

21

 

 

3.4.1        Separation and Identification of Group 1 Cations

 

 

 

(Pb', Ag*,

3.4.2        Separation and Identification of Cations of Group II

21

 

 

(Hg2±,         Cd2+ and Bi3±)

22


viii

 

Instrumental Methods of Chemical Analysis

3.4.3       Separation and Identification of Cu" and Cd"

Using Paper Chromatography                                         22

3.4.4       Separation and Identification of Amino Acids by

Descending Paper Chromatography                                 23

3.4.5       Separation and Identification of Monosaccharides

by Descending Paper Chromatography                             24

Exercises                                                                                    25

4.

Thin Layer Chromatography

27

 

4.1

Principle of TLC Separation

27

 

4.2

Preparation of TLC Plates

27

 

4.3

Procedure for TLC

29

 

4.4

Preparative TLC

31

 

4.5

Two-dimensional TLC

32

 

4.6

High-Performance Thin-Layer Chromatography (HPTLC)

33

 

4.7

Reversed Phase Partition Thin Layer Chromatography

34

 

4.8

Thin Layer Chromatographic Separations

34

 

 

4.8.1       Separation and Identification of Amino Acids by TLC

34

 

 

4.8.2       Separation and Identification of Carbohydrates by TLC

35

 

 

4.8.3       Separation and Identification of Ketones

35

 

 

Exercises

36

5.

Column Chromatography

37

 

5.1

Principle of Column Chromatography

38

 

5.2

Procedure of Column Chromatography

38

 

5.3

High Performance Column Chromatography

40

 

5.4

Dry Column Chromatography

41

 

5.5

Chiral Chromatography

42

 

5.6

Columns Chromatographic Separations

43

 

 

5.6.1       Separation and Identification of a Mixture of

o-Nitroaniline and p-Nitroaniline by Column

 

 

 

Chromatography

43

 

 

5.6.2       Separation and Identification of a Mixture of cis- and

 

 

 

trans-Azobenzene by Column Chromatography

43

 

 

5.6.3       Purification of Anthracene by Column Chromatography

44

 

 

Exercises44

 

6.

Gas Chromatography

45

 

6.1

Introduction

45

 

6.2

Principle of Gas Chromatography

45


Contents

6.3

6.4

6.5

6.6

The Chromatographic Instrument

   6.3.1   Carrier Gas

   6.3.2   Sample Injection System

   6.3.3   The Column

   6.3.4   The Detector

   6.3.5   Temperature Programming

Preparative Gas Chromatography
Applications of Gas Chromatography
Gas Chromatographic Separations

ix

47

47

47

48

50

50

50

51

53

 

 

6.6.1      Estimation of Sucrose

53

 

 

6.6.2      Estimation of Aluminium in Water

54

 

 

Exercises 54

 

7.

High Performance Liquid Chromatography (HPLC)

55

 

7.1

Introduction

55

 

7.2

Principle of HPLC

55

 

7.3

HPLC Instruments

56

 

 

7.3.1      Mobile Phase

56

 

 

7.3.2      Sample Injection Systems

56

 

 

7.3.3      Column

56

 

 

7.3.4      Detector

57

 

 

Exercises 57

 

8.

Gel Chromatography

59

 

8.1

Introduction

59

 

8.2

Principle of Gel Chromatography

59

 

8.3

Types of Gels

59

 

8.4

Applications of Gel Chromatography

61

 

 

Exercises 61

 

9.

Ion Exchange Chromatography

63

 

9.1

Introduction

63

 

9.2

Different Types of Resins

64

 

 

9.2.1      Anion Exchange Resins

64

 

 

9.2.2      Cation Exchange Resins

65

 

9.3

Principle of Ion Chromatography

65

 

9.4

Procedure for Ion Chromatography

66

 

9.5

Applications of Ion Chromatography

67

 

 

9.5.1      Determination of Anions

67

 

 

9.5.2      Separation of Lit, Na' and K± Ions

68

 

 

9.5.3      Removal of Phosphate (Interferening Radical)

68


x     Instrumental Methods of Chemical Analysis

    9.5.4   Softening of Hard Water                                                     68

    9.5.5   Demineralised Water                                                          69

    9.5.6   Separation of Amino Acids                                                 70

Exercises 71

10. Electro Chromatography                                                                           73

10.1 Introduction                                                                                        73

10.2 Paper Electrophoresis                                                                          73

10.3 Gel Electrophoresis                                                                             74

10.4 Capillary Electrophoresis (CE)                                                             75

Exercises 77

Part III: Thermal Methods of Chemical Analysis

11.  Thermogravimetric Analysis                                                                 81

11.1 Introduction                                                                                    81

11.2 Thermogravimetric Analysis                                                            82

11.3 Thermogravimetric Analyser                                                            82

11.3.1     Measurement of Weight                                                  82

11.3.2 Heating Arrangement and Temperature Measurement            83

11.3.3     Sample Holders                                                              83

11.3.4     Atmospheric Control                                                      83

11.3.5 Recorders                                                                           83

11.4 Thermogravimetric Curve (TG curve)                                               84

11.4.1     Factors Affecting Thermogravimetric Curves                   85

11.5 Applications of TGA                                                                        86

11.5.1     Determination of Thermal Stability of Salts                      86

11.5.2     Analysis of Mixtures                                                      87

11.5.3     Determination of Curie Temperature                                87

11.5.4     Organic Compounds                                                       88

Exercises 89

12.  Differential Thermal Analysis                                                               91

12.1 Introduction                                                                                    91

12.2 Differential Thermal Analyser                                                          92

12.3 Factors Affecting DTA                                                                     93

12.4 Applications of DTA                                                                        94

12.4.1     Heat of Reaction                                                            94

12.4.2     Specific Heat                                                                 94

12.4.3     Identification of Substances                                            95

12.4.4     Identification of the Products of a Reaction                      95

12.4.5 Purity of the Compound                                                      95

12.4.6     Quantitative Analysis                                                     95

12.5 Miscellaneous Applications                                                              95 Exercises 96


Contents

13. Thermometric Titrations

xi

97

 

13.1

Introduction

97

 

13.2

Thermometric Titration Apparatus

98

 

13.3

Titrimetric Procedure

99

 

13.4

Applications

99

 

 

13.4.1     Neutralisation Titrations

99

 

 

13.4.2     Precipitation Titrations

100

 

 

13.4.3     Complexation Titrations

100

 

 

13.4.4     Redox Titrations

101

 

 

Exercises 101

 

14.

Miscellaneous Thermal Methods

103

 

14.1

Derivative Thermogravimetric Analysis (DTA)

103

 

14.2

Thermobarography

103

 

14.3

Differential Scanning Calorimetry (DSC)

103

 

14.4

Thermomechanical Analysis (TMA)

104

 

14.5

Electric Thermal Analysis (ETA)

105

 

 

Exercises 105

 

 

 

Part-IV: Electrochemical Method

 

15.

 

Coulometric

Method Of Analysis

109

 

15.1

Introduction

109

 

15.2

Coulometer

110

 

15.3

Coulometric Analysis

111

 

 

15.3.1     Constant Current Coulometric Analysis

111

 

 

15.3.2     Controlled Potential Coulometric Analysis

112

 

15.4

Coulometric Titrations

112

 

 

15.4.1     Principles of Coulometric Titrations

112

 

 

15.4.2     Advantages of Coulometric Titrations

112

 

 

15.4.3     Errors in Coulometric Titrations

112

 

15.4

Nature of Electrodes Used in Coulometric Titrations

113

 

15.5

Applications of Coulometric Titrations

113

 

 

Exercises 115

 

16.

Polarography

 

 

16.1

Introduction

117

 

16.2

The Instrument

117

 

16.3

Factors Affecting Current-voltage Curves

119

 

16.4

Half Wave Potentials

121

 

16.5

Applications of Polarography

122

 

 

Exercises 123

 


xii                                                         Instrumental Methods of Chemical Analysis

17.  Amperometric Titrations                                                                     125

17.1 Introduction                                                                                  125

17.2 Apparatus for Amperometric Titrations                                            125

17.3 End point in Amperometric Titrations                                              128

17.4 Advantages of Amperometric Titrations                                           129

17.5 Disadvantages of Amperometric Titrations                                       130

17.6 Applications of Amperometric Titrations                                         130

17.7 Amperometric Titrations with Two Indicator Electrodes                    132 Exercises 133

18.  Potentiometric Titrations                                                                     135

18.1 Introduction                                                                                  135

18.2 Principle of Potentiometric Titration                                                136

18.3 Indicator Electrode                                                                         137

18.4 Reference Electrodes                                                                      138

18.5 Apparatus for Potentiometric Titrations                                           139

18.6 Applications of Potentiometric Titrations                                         140

    18.6.1  Neutralisation Titrations                                                140

    18.6.2  Oxidation-Reduction Titrations                                      141

    18.6.3  Precipitation Titrations                                                  143

    18.6.4  Complexometric Titrations                                            144

18.7 Differential Titrations                                                                     144

18.8 Automatic Titrations                                                                      145

18.9 Advantages of Potentiometric Titrations                                          145 Exercises 146

19.  Conductometric Titrations                                                                   147

19.1 Introduction                                                                                  147

19.2 Terms Used in Conductometric Titrations                                        147

19.3 Applications of Conductometric Titrations                                       149

19.4 Conductometric Titrations                                                              150

    19.4.1  Conductometric Titrations of Acids-alkalies                    150

    19.4.2  Conductometric Precipitation Reactions                         153

19.5 Advantages of Conductometric Titrations                                        154 Exercises 154

20.  Spectrophotometric Titrations                                                             155

20.1 Introduction                                                                                  155

20.2 Procedure of Titration                                                                    156

20.3 Applications                                                                                  157 Exercises 158


Contents

21. High Frequency Titrations

xiii

159

 

21.1

Introduction

159

 

21.2

Instrument

159

 

21.3

High Frequency Titrations

161

 

21.4

Applications of High Frequency Methods

162

 

 

21.4.1    Acid-base Titrations

162

 

 

21.4.2    Measurement of Dielectric Constant

162

 

 

21.4.3    Analysis of Binary Mixtures

164

 

 

21.4.4    Complexometric Titrations

164

 

21.5

Advantages of High Frequency Titrations

164

 

 

Exercises 164

 

22.

pH Measurements

167

 

22.1

Introduction

167

 

22.2

Determination of pH of a Solution by Potentiometry

169

 

 

22.2.1    Determination of pH Using Hydrogen Electrode

169

 

 

22.2.2    Determination of pH Using Glass Electrode

171

 

 

22.2.3    Determination of pH Using Quinhydrone Electrode

173

 

22.3

Determination of pH Using a pH Meter

175

 

22.4

Determination of pH Using pH Indicators

176

 

 

Exercises 177

 

23.

Calorimetry

179

 

23.1

Introduction

179

 

23.2

Principle of Calorimeter

181

 

23.3

Procedure for the Estimation of Cue' in a Unknown Solution

181

 

 

Exercises 184

 

Part V: Instrumental Method for Structure Determination of Organic Compounds

24. Infrared Spectroscopy                                                                           187

24.1 Introduction                                                                                  187

24.2 Basic Theory                                                                                 189

24.3 Instrumentation                                                                             189

24.4 Fourier Transform Infrared (FTIR) Spectrometer                              190

24.4.1 Principle of Interferometry                                                           191

24.5 Mode of Vibrations                                                                        191

24.5.1 Number of Fundamental Vibrations, Selection Rules                      192

24.6 Recording of IR Spectra                                                                  193 24.7 Major Bands in the IR Spectra of Different Types of Organic

Compounds                                                                                197


xiv                                                         Instrumental Methods of Chemical Analysis

24.8 Interpretation of the Infrared Spectra                                              205

24.9 Applications of Infrared Spectroscopy                                            219

24.10 IR spectras of Some Typical Compounds                                     222

24.11 Non-dispersive Infrared Spectroscopy                                          230

Exercises 230

25.    Ultraviolet Spectroscopy                                                                     241

25.1 Introduction                                                                                 241

25.2 Terms used in UV Spectroscopy                                                    243

25.3 Electronic Transitions                                                                   244

25.4 Ultraviolet Spectrometer                                                               246

25.5 Characteristic Absorption of Organic Compounds                           248

25.6 Interpretation of UV Spectra                                                          269

25.7 Applications of UV Spectroscopy                                                  269

Exercises 273

26.    Nuclear Magnetic Resonance (NMR) Spectroscopy                            279

26.1 Proton Nuclear Magnetic Resonance ('HNMR or PMR)                   279 Spectroscopy

26.1.1 Introduction                                                                    279

26.1.2 The NMR Spectrometer                                                   281

26.1.3     Interpretation of the 'HNMR Spectra                             284

26.1.4     Chemical Shifts of Different Types of Protons               293

26.1.5     The Splitting of Signals                                                299

26.1.6     Final Interpreting an 'HNMR Spectra                              311
26.1.7 Interpretation of the 'HNMR Spectra of Some

Simple Molecules                                                        314

26.1.8 Predicting the 'HNMR Spectrum of an Organic                  316 Compound

26.1.9 Complicated 'HNMR Spectra                                            317

26.1.10 Applications of Proton Magnetic Resonance                    325 Spectroscopy

26.2 Carbon-13 NMR (13C NMR) Spectroscopy                                    329

26.2.1 Introduction                                                                    329

26.2.2 Interpretation of 13C NMR Spectra                                   330

26.2.3     Chemical Shift                                                            332

26.2.4     Identification of Peaks in 13C NMR Spectra on the

Basis of Hybridization of Each Carbon Atom                335

26.2.5 Two-dimensional (2d) 13C NMR Spectroscopy                  338

26.2.6     Applications of 13C Spectra                                         338
Exercise s 340


Contents

27. Electron Spin Resonance (ESR) Spectroscopy

xv

353

 

27.1

Introduction

353

 

27.2

Instrument

355

 

27.3

Recording an ESR spectra

357

 

27.4

Hyperfine Splitting

359

 

 

27.4.1    ESR Spectra of Hydrogen Atom

359

 

 

27.4.2    ESR Spectra of Deuterium

360

 

 

27.4.3    ESR Spectra of Methyl Radical

362

 

27.5

Determination of g—value

362

 

27.6

Line width

363

 

27.7

Hyperfine Structure in ESR Spectra

363

 

27.8

Applications of ESR Spectroscopy

366

 

27.9

Electron Nuclear Double Resonance (ENDOR)

369

 

27.10 Electron Double Resonance (ELDOR)

369

 

Exercise s 369

 

28.

Mass Spectrometry

373

 

28.1

Introduction

373

 

28.2

The Mass Spectrometer

374

 

28.3

The Mass Spectrum

376

 

28.4

Determination of Molecular Formula

378

 

 

28.4.1    Molecular Formula from Isotopic Peaks

378

 

 

28.4.2    Molecular Formula Using High-resolution Mass

 

 

 

Spectrometry

381

 

28.5

Recognitation of the Molecular Ion Peak

382

 

28.6

Use of the Molecular Formula

384

 

28.7

Fragmentation

385

 

 

28.7.1    Fragmentation by Cleavage of a C—C Single Bond

385

 

 

28.7.2    Fragmentation by Cleavage of More than One Bond

388

 

 

28.7.3    Rearrangements

390

 

28.8

Mass Spectra of Some Typical Classes of Compounds

391

 

 

28.8.1    Saturated Hydrocarbons

391

 

 

28.8.2    Unsaturated Hydrocarbons

393

 

 

28.8.3    Alcohols

395

 

 

28.8.4    Phenols

398

 

 

28.8.5    Ethers

399

 

 

28.8.6    Ketones

400

 

 

28.8.7    Aldehydes

403

 

 

28.8.8    Carboxylic Acids

404


xvi

 

Instrumental Methods of Chemical Analysis

 

 

28.8.9     Carboxylic Esters

405

 

 

28.8.10    Lactones

407

 

 

28.8.11    Amines

408

 

 

28.8.12    Amides

409

 

 

28.8.13    Nitro Compounds

410

 

 

28.8.14    Nitrites

411

 

 

28.8.15    Nitrates

411

 

 

28.8.16    Sulfur Containing Compounds

411

 

 

28.8.17    Compounds Containing Halogens

412

 

 

28.8.18    Heterocyclic Compounds

414

 

28.9

Gas Chromatography-Mass Spectrometry

417

 

 

28.9.1     Applications of Gas Chromatography-Mass

417

 

 

Spectrometry

 

 

28.10 Negative Ion Mass Spectrometry

417

 

 

28.10.1    Negative Ion Formation

418

 

 

28.10.2    Reactions Observed During Negative Ion Chemical

 

 

 

Ionization

418

 

 

28.10.3    Fragment Patterns of Negative Ions

419

 

 

28.10.4    Applications of Negative Ion Mass Spectrometry

423

 

28.11 Applications of Mass Spectrometry

425

 

 

28.11.1    Determination of Structure of Organic Compounds

425

 

 

28.11.2    Determination of Molecular Weight and Molecular

 

 

 

Formula

425

 

 

28.11.3    Miscellaneous Applications

426

 

28.12

Solved Problems

426

 

 

Exercises 426

 

29.

Polarimetry

433

 

29.1

Introduction

433

 

29.2

Plane Polarized Light

433

 

29.3

Optical Activity

434

 

29.4

Kinds of Molecules Analysed by Polarimetry

435

 

29.5

Theoretical Considerations

435

 

29.6

Polarimeter

437

 

29.7

Applications of Polarimetry

437

 

 

Exercises 441

 


Contents

30. Optical Rotatory Dispersion and Circular Dichroism

xvii

443

 

30.1

Introduction

443

 

30.2

Circular Birefringence

445

 

30.3

Circular Dichroism

445

 

30.4

Cotton Effect

446

 

30.5

Optical Rotatory Dispersion (ORD)

446

 

 

30.5.1 Types of Optical Rotatory Dispresion Curves

446

 

30.6

Comparison of ORD and CD Curves

448

 

30.7

Axial Haloketone Rule

448

 

30.8

The Octant Rule

449

 

30.9

Instrumentation for ORD and CD Measurements

451

 

 

30.9.1 Instruments for ORD Measurements

451

 

 

30.9.2 Instrumentation for CD Measurements

452

 

30.10 Applications of Optical Rotatory Dispersion and Circular Dichroism

453

 

 

Exercises456

 

 

Part-VI: Instrumental Methods for Analysis of Inorganic Compounds

 

31.

Microwave Spectroscopy

459

 

31.1

Introduction

459

 

31.2

Differences between Microwave Spectroscopy and IR Spectroscopy

460

 

31.3

Theory of Microwave Spectroscopy

460

 

31.4

Diatomic Molecule as a Rigid Rotator

460

 

31.5

Selection Rules for Rotational Spectra

463

 

31.6

Instrument for Microwave Spectroscopy

465

 

31.7

Aplications

467

32.

Exercises470

Nuclear Quadrupole Resonance (NQR) Spectroscopy

473

 

32.1

Introduction

473

 

32.2

Theory

473

 

32.3

NQR Instrument

475

 

32.4

Applications of NQR

476

33.

Exercises478

Raman Spectroscopy

479

 

33.1

Introduction

479

 

35.2

Principle of Raman Spectroscopy

479

 

33.3

Characteristics of Raman Lines

481

 

33.4

Differences between Raman Spectra and Infrared Spectra

481


xviii                                                     Instrumental Methods of Chemical Analysis

33.5 Polarizability                                                                                     482

33.6 Explanation of Mechanism of Raman Effect                                        482

33.7 Raman Spectrometer                                                                          485

33.8 Intensity of Raman Peaks                                                                   486

33.9 Applications of Raman Spectroscopy                                                  486

Exercises 491

34. Mossbauer Spectroscopy                                                                           493

34.1 Introduction                                                                                      493

34.2 Mossbauer Effect                                                                               493

34.3 Mossbauer Spectrometer                                                                    494

34.4 Nuclides and their Characteristics                                                       496

34.5 Applications Mossbauer Spectroscopy                                                 496

Exercises 500

35. Emission Spectroscopy                                                                            503

35.1 Introduction                                                                                      503

35.2 Types of Spectra                                                                                503

35.3 Comparison of Emission Spectroscopy with Flame Photometry             504

35.4 Instrumentation                                                                                 505

35.5 Applications of Emission Spectroscopy                                               510

Exercises 512

 


Part VII: Miscellaneous Instrumental Methods

36.  Atomic Absorption Spectroscopy (AAS)                                                  515

36.1 Introduction                                                                                      515

36.2 The Instrument and Procedure of Estimation                                        516

36.3 Determination of the Concentration of Element in ppm                         519

36.4 Double Beam Atomic Absorption Spectrometer                                   520

36.5 Atomic Absorption Spectroscopy Versus Flame Emission

Sprectroscopy                                                                               520

36.6 Interference                                                                                       521

36.6.1     Chemical Interference                                                     521

36.6.2     Solvent Interference                                                        521

36.7 Advantages of Atomic Absorption Spectroscopy                                  521

36.8 Applications of Atomic Absorption Spectroscopy                                 522

36.9 Flameless Atomic Absorption Method                                                 526

Exercises 526

37.  Flame Photometry                                                                                   527

37.1 Introduction                                                                                      527

37.2 Principle of Flame Photometry                                                            527

37.3 Components of a Flame Photometer                                                    529


Contents

37.4

Selection of Appropriate Solvent for Dissolving the Salt in

xix

 

 

Flame Photometry

533

 

37.5

Instrument

533

 

 

37.5.1     Simple Flame Photometer

533

 

 

37.5.2     Internal Standard Flame Photometer

534

 

37.6

Techniques of Analysis

535

 

 

37.6.1     Analysis Involving Calibration Curves

535

 

 

37.6.2     Analysis Involving Internal Standard

535

 

 

37.6.3     Analysis Involving Addition of Standard

535

 

37.7

Preparation of Standard Solutions

535

 

37.8

Interferences in Flame Photometry

536

 

37.9

Factors Which Affect Intensity of Emitted Radiation

537

 

37.10

Limitations of Flame Photometry

538

 

37.11

Applications of Flame Photometry

538

 

 

Exercises 539

 

38.

Fluorimetry and Phosphorimetry

541

 

38.1

Introduction

541

 

38.2

Fluorescence and Absorption Method

542

 

38.3

Fluoremetry and Phosphorimetry

542

 

38.4

Theory

542

 

 

38.4.1     Relation between Fluorescence Intensity and

 

 

 

Concentration

544

 

38.5

Types of Transitions in Fluorescence

544

 

38.6

Instrumentation

545

 

 

38.6.1     Instrument for Fluorimetric Analysis

545

 

 

38.6.2     Instrument for Phosphorimetric Analysis

547

 

38.7

Applications of Fluorimetry

548

 

38.8

Applications of Phosphorimetry

551

 

38.9

Comparison of Fluorimetry and Phosphorimetry

551

 

 

Exercises 552

 

39.

Nephelometric and Turbidimetric Techniques

553

 

39.1

Introduction

553

 

39.2

Turbidimetry and Colorimetry

554

 

39.3

Nephelometry and Fluorimetry

554

 

39.4

Choice between Nephelometry and Turbidimetry

554

 

39.5

Basic Principles of Nephelometry and Turbidimetry

554


xx                                                        Instrumental Methods of Chemical Analysis

39.6 Instrumentation                                                                            556

39.6.1 Turbidimeters                                                                  558

39.6.2 Nephelometers                                                                558

39.7 Applications                                                                                559 Exercises 562

40.    Refractometry and Interferometry                                                     563

40.1 Introduction                                                                                 563

40.2 Specific Rotation                                                                          564

40.3 Molar Refraction                                                                          564

40.4 Determination of Refractive index                                                  566

40.5 Applications of Refractometry                                                       567

40.6 Optical Exaltation                                                                        568

40.7 Interferometry                                                                              569

40.7.1     Applications of Interferometer                                     571
Exercises 571

41.    X-ray Methods 573

41.1 Introduction                                                                                 573

41.2 Theoretical Consideration                                                             573

41.3 Instrumentation                                                                            576

41.4 Instrument for x-ray Absorption                                                     579

41.5 Instrument for x-ray Diffraction                                                     580

41.5.1     Laue Method                                                              580

41.5.2     Rotating Crystal Method                                              581

41.6 Application of x-ray Diffraction                                                     581

41.7 X-ray Fluorescence                                                                       585

41.7.1 Instrumentation                                                               586

41.7.2     Applications of x-ray Fluorescence Spectroscopy           586
Exercises 587

Index                                                                                                589-592


V.K. Ahluwalia was Professor of Chemistry at Delhi University for more than three decades teaching graduate, postgraduate, and M.Phil. students. He was also Postdoctoral Fellow between 1960 and 1962 and worked with renowned global names from prestigious international universities. He was Visiting Professor of Biomedical Research at University of Delhi.

V.K. Ahluwalia is widely regarded as Leading Subject Expert in chemistry and allied subjects along with being “Choice Award for an Outstanding Academic Title” Winner. He has published more than 100 titles. Apart from books, he has published more than 250 research papers in national and international journals.

Describes the theory underlying each instrumental procedure and application for all instrumental methods

Deals with a very extensive range of instrumental methods of chemical analysis

Includes a set of problems at the end of each chapter

Date de parution :

Ouvrage de 570 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 116,04 €

Ajouter au panier

Ces ouvrages sont susceptibles de vous intéresser