Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/emerging-natural-and-tailored-nanomaterials-for-radioactive-waste-treatment-and-environmental-remediation/descriptif_3812454
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3812454

Emerging Natural and Tailored Nanomaterials for Radioactive Waste Treatment and Environmental Remediation Principles and Methodologies Interface Science and Technology Series

Langue : Anglais

Coordonnateur : Chen Changlun

Couverture de l’ouvrage Emerging Natural and Tailored Nanomaterials for Radioactive Waste Treatment and Environmental Remediation

Emerging Natural and Tailored Nanomaterials for Radioactive Waste Treatment and Environmental Remediation: Principles and Methodologies, Volume 29 provides an overview of the most important radionuclide sources in the environment, their interaction with environmental media, and appropriate remediation techniques. The book focuses on the assessment of radionuclide sorption behavior in contaminated sites and the synthesis of new materials for radionuclides remediation through sorption concepts. Chapters investigate the main interaction mechanisms between toxic/radioactive metal ions with natural and manmade materials, natural clay minerals and oxides, and novel nanomaterials, such as ordered mesoporous silicas, carbon nanotubes, graphene, and metal-organic framework-based materials.

Techniques and models discussed include kinetics analysis, thermodynamic analysis, surface complexation models, spectroscopic techniques, and theoretical calculations.

1. Radionuclides immobilization on Phyllosilicate minerals: Sorption, modelling and microscopies studies 2. Interactions between radionuclides and oxides-water interfaces in the environment 3. Microorganisms and radionuclides 4. Adsorption of radionuclides on ordered mesoporous silicas 5. Adsorption of radionuclides on carbon-based nanomaterials 6. Removal of toxic/radioactive metal ions by metal-organic framework-based materials 7. Application of NZVI and its composites in the treatment of toxic and radioactive metal ions

Students, researchers, academicians, and professionals in chemical and environmental engineering researching interaction mechanisms between toxic/radioactive metal ions

Changlun Chen is associate Professor in the Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China. He received his PhD (2008) from Hefei Institutes of Physical Sciences, Chinese Academy of Sciences. In 2008-2010, he worked in Shizuoka University Japan, and then returned to the institute. Presently, he centers on nano-material preparation and functionalization, the application of nanostructured materials and nanotechnology for environment pollution treatment. He has published more than 100 peer-reviewed journal publications.
  • Provides a systemic discussion on the interactions between toxic and radioactive metal ions and natural and manmade materials
  • Helps to select the best approach to remove toxic/radioactive metal ions from a surface
  • Edited by a scientific authority in toxic/radioactive metal ion interactions

Date de parution :

Ouvrage de 347 p.

15x22.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

209,76 €

Ajouter au panier