Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/feynman-lectures-on-gravitation-paperback/feynman/descriptif_1633642
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1633642

Feynman Lectures On Gravitation Frontiers in Physics Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Feynman Lectures On Gravitation
The Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took an untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein's general theory of relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the principle of equivalence.
Foreword Quantum Gravity Lecture 1 * A Field Approach to Gravitation * The Characteristics of Gravitational Phenomena * Quantum Effects in Gravitation * On the Philosophical Problems in Quantizing macroscopic Objects * Gravitation as a Consequence of Other Fields Lecture 2 * Postulates of Statistical Mechanics * Difficulties of Speculative Mechanics * The Exchange of One Neutrino * The Exchange of Two Neutrinos Lecture 3 * The Spine of the Graviton * Amplitudes and Polarizations in Electrodynamics, Our Typical Field Theory * Amplitudes for Exchange of a Graviton * Physical Interpretation of the Terms in the Amplitudes * The Lagrangian for the Gravitational Field * The Equations for the Gravitational Field * Definition of Symbols Lecture 4 * The Connection Between the Tensor Rank and the Sign of a Field * The Stress-Energy Tensor for Scalar Matter * Amplitudes for Scattering (Scalar Theory) * Detailed Properties for Plane Waves, Compton Effect * Nonlinear Diagrams for Gravitons * The Classical Equations of Motion of a Gravitating Particle * Orbital Motion of Particle About a Star Lecture 5 * Planetary Orbits and the Precession of Mercury * Time Dilation in a Gravitational Field * Cosmological Effects of the Time Dilation. Machs Principle * Machs Principle in Quantum Mechanics * The Self Energy of the Gravitational Field Lecture 6 * The Bilinear Terms of the Stress-Energy Tensor * Formulation of a Theory Correct to All Orders * The Construction of Invariants with Respect to Infinitesimal Transformations * The Lagrangian of the Theory Correct to All Orders * The Einstein Equation for the Stress-Energy Tensor Lecture 7 * The Principle of Equivalence * Some Consequences of the Principle of Equivalence * Maximum Clock Rates in Gravity Fields * The Proper Time in General Coordinates * The Geometrical Interpretation of the Metric Tensor * Curvatures in Two and Four Dimensions * The Number of Quantities Invariant under General Transformations Lecture 8 * Transformations of T
Richard Feynman