STRUCTURE-BASED DRUG DISCOVERY

Edited by

HARREN JHOTI
Astex Therapeutics, Cambridge, UK

ANDREW R. LEACH
GlaxoSmithKline, Stevenage, UK

Springer
Preface

Preface xi

Chapter 1: Five Years of Increasing Structural Biology Throughput – A Retrospective Analysis

Enrique Abola, Dennis D. Carlton, Peter Kuhn and Raymond C. Stevens

1. Introduction 1
 1.1 Structural biology and genomics 1
 1.2 Protein structure initiative 2
2. New Technologies in PSI-1 Pipelines 4
 2.1 High-throughput structural determination pipeline 4
 2.2 Pipeline technologies 7
3. The JCSG Protein and Crystal Production Pipelines 12
 3.1 Protein targets 12
 3.2 Production strategies 12
 3.3 Cloning and expression 12
 3.4 Purification 13
 3.5 Suitability testing 14
 3.6 Crystallization 14
4. Discussion 16
 4.1 Production results, JCSG and other centers 16
 4.2 Results from TSRI core 18
 4.3 Future directions 20

Acknowledgements 24
References 24

Chapter 2: Protein Production For Structural Genomics – Strategies for the Next Phase

Pär Nordlund, Tobias Cornvik and Helena Berglund

1. Introduction 27

Table of Contents

2. Overview of Current Strategies 28
 2.1 Parallel cloning formats 30
 2.2 Multi-parameter expression screening platforms in E.coli 31
 2.3 Parallel expression screening platforms 32
3. Parameters – Current View 33
 3.1 Vectors 33
 3.2 Strains 34
 3.3 Multi-construct approaches 35
4. Library-selection Technologies for Generating Soluble Proteins 35
5. Scale-up Fermentation and Purification 38
6. High-throughput Biophysical Characterization 41
7. Conclusions and Future Perspectives 43
References 44

Chapter 3: Introduction to Fragment Screening
Andrew R. Leach and Michael M. Hann
1. Introduction 49
2. Drug Likeness 49
3. The Historical Basis of Lead-likeness and Fragment Screening 51
4. Constructing a Fragment Set for Screening 61
5. Converting Fragment Hits into Leads 66
6. Summary 70
References 70

Chapter 4: Fragment-based NMR Screening in Lead Discovery
Christopher A. Lepre and Jonathan M. Moore
1. Introduction 73
2. Experimental Methods – Detection of Binding by NMR 75
 2.1 Protein-directed methods 75
 2.2 Ligand-directed methods 78
 2.3 Saturation transfer difference (STD) methods 79
 2.4 WaterLOGSY 82
3. Applications of NMR Fragment-based Screening 86
 3.1 Applications of a combination strategy 86
Table of Contents

3.2 Applications of an elaboration strategy 90
3.3 Applications of a variation strategy 91
4. Conclusions 94
References 94

Chapter 5: Fragment-based Screening by X-Ray Crystallography
Valerio Berdini, Marc O’Reilly, Miles S. Congreve and Ian J. Tickle
1. Introduction 99
2. Fragment Libraries 102
 2.1 Physico-chemical properties of library members 102
 2.2 Drug fragment library 104
 2.3 Privileged fragment library 107
 2.4 Targeted libraries 108
3. Compound Soaking, Data Collection and Processing 109
4. Protein-fragment Interactions in CDK2 112
5. Hits-to-Leads Optimization 115
6. Summary 122
Acknowledgements 122
References 123

Chapter 6: Scaffold-based Drug Discovery
Kam Y.J. Zhang, Michael V. Milburn and Dean R. Artis
1. Introduction 129
2. The Scaffold-based Drug Discovery Paradigm 131
 2.1 Scaffold library construction and profiling 134
 2.2 Low-affinity biochemical screening as an initial filter 136
 2.3 Automated high throughput co-crystallography as the second filter 138
 2.4 Computational approaches for scaffold validation and lead optimization 139
 2.5 Synthetic chemistry based on validated scaffold increases efficiency 142
3. The Discovery of Potent PDE4 Inhibitors Using Scaffold-based Drug Discovery 145
4. Summary 148
Table of Contents

Acknowledgements .. 149
References ... 150

Chapter 7: Biophysical Methods: Mechanism of Action Studies

Chun-wa Chung and Peter N. Lowe

1. Introduction .. 155
2. Principles ... 156
 2.1 Considerations for equilibrium measurements 157
 2.2 Stoichiometry .. 157
 2.3 Kinetic measurements ... 158
 2.4 Specific issues associated with low MW and low affinity ligands 160
3. Methods ... 161
 3.1 Fluorescence ... 161
 3.2 Nuclear magnetic resonance (NMR) 168
 3.3 Surface plasmon resonance (SPR) 173
 3.4 Isothermal titration calorimetry (ITC) 179
 3.5 Protein mass spectrometry 182
 3.6 Affinity chromatography 185
 3.7 Enzyme catalytic assay & functional assays 187
 3.8. Other methods ... 188
4. Examples of MOA Strategies .. 191
 4.1 Phosphotyrosine mimetics for SH2 domains 191
 4.2 Nucleic-acid utilizing enzymes 193
5. Conclusions ... 197
References ... 197

Chapter 8: Illustration of Current Challenges in Molecular Docking: An Application of Docking, and Virtual Screening to Thymidine Kinase

Marcel L. Verdonk, Richard D. Taylor, Gianni Chessari and Christopher W. Murray

1. Introduction .. 201
2. Current Challenges Facing Molecular Docking 202
 2.1 Representation of the ligand 202
 2.2 Representation of the protein 202
Table of Contents

2.3 Water mediation 203
2.4 Scoring 204
2.5 Searching and speed 205
2.6 Validation 205
2.7 Thymidine kinase example 206
3. Methodology 208
 3.1 Test set preparation 208
 3.2 Target preparation 209
 3.3 Docking 209
 3.4 Scoring functions 210
 3.5 Hydrogen-bond constraints 212
4. Results 212
 4.1 Docking 212
 4.2 Virtual screening 216
5. Conclusions 219
Acknowledgements 219
References 219

Chapter 9: Scoring Functions: From Free-energies of Binding to Enrichment in Virtual Screening
Luca A. Fenu, Richard A. Lewis, Andrew C. Good, Michael Bodkin and Jonathan W. Essex
1. Introduction 223
2. Force Field Scoring Functions 226
 2.1 Problems and solutions 227
3. Empirical Scoring Functions 227
 3.1 Problems and solutions 229
 3.2 Recent advances 229
4. Knowledge-based Scoring Functions 231
 4.1 Recent advances 234
5. Consensus Scoring 235
 5.1 Recent advances 236
6. Comparisons Between Scoring Functions 237
7. New Test and Training Sets 238
8. Conclusions 239
References 239

Subject Index 247
PREFACE

The last 25 years has seen structure-based drug discovery evolve from an interesting niche activity pursued by a relatively small number of companies to being a fully integrated series of techniques that are part of the core technologies within most large pharmaceutical companies. This increase in popularity has been driven to a large extent by significant technological advances that have allowed the three-dimensional structure of a target protein to be determined in a much shorter time frame. In the 1980’s it could take several years to determine the crystal structure of a key drug target; obtaining structures of bound inhibitors could consume several more months. Today, protein crystal structures may be obtained in months rather than years and subsequent protein/inhibitor complexes often only take weeks (if not days) to solve. Another key factor in the uptake of structure-based discovery methods has been the availability of crystal structures for significantly more proteins at the start of a drug discovery program. This increase in the number of protein structures has also helped the development of improved computational chemistry methods for the prediction of the binding modes of compounds and binding energies.

Successful structure-based design thus requires the synthesis of several different techniques, both experimental and theoretical. This book is intended to provide an overview of some of the more recent developments, with a particular focus on structural genomics, biophysical techniques, fragment-based approaches and computational methods. The first two chapters outline the key advances in structural biology that have addressed some of the major bottlenecks, such as protein expression and crystallisation, in the process of solving protein crystal structures. They also include a review of the structural genomics initiatives intended to obtain novel protein structures that are being pursued around the world. The subsequent five chapters describe several aspects of fragment-based discovery as a major new approach to discovering new drug molecules. The essence of this approach involves the use of biophysical techniques, such as X-ray crystallography and NMR, to screen fragments that due to their limited size and complexity typically bind the drug target with significantly lower affinity than drug-sized molecules. The potential advantages of this approach over conventional drug discovery are discussed as well as the technological
advances required to undertake high-throughput X-ray crystallography and NMR experiments on the binding of molecular fragments to proteins. The final two chapters focus on the latest developments in computational techniques that are integral to applying structure-based methods to medicinal chemistry strategies. These include methodologies for improving the success of docking compounds to protein structures and the scoring of these binding modes in order to predict the free energy of binding.
Structure-based Drug Discovery
(Eds.) H. Jhoti; A.R. Leach
2007, XII, 252 p., Hardcover