Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/transports/train-aerodynamics/descriptif_3826981
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3826981

Train Aerodynamics Fundamentals and Applications

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Train Aerodynamics

Train Aerodynamics: Fundamentals and Applications is the first reference to provide a comprehensive overview of train aerodynamics with full scale data results. With the most up-to-date information on recent advances and the possibilities of improvement in railway facilities, this book will benefit railway engineers, train operators, train manufacturers, infrastructure managers and researchers of train aerodynamics. As the subject of train aerodynamics has evolved slowly over the last few decades with train speeds gradually increasing, and as a result of increasing interest in new train types and high-speed lines, this book provides a timely resource on the topic.

1. Background and a brief history2. Experimental, numerical and analytical tools3. The flow around trains4. Aerodynamic resistance of trains and shape optimization5. Loads on trackside structures and people6. Ballast flight beneath trains7. Aerodynamic effects on pantographs and overhead wire systems8. Cross wind effects on trains9. Pressure transients and sonic booms in tunnels10. Emerging issues

Academics, postgraduate students that do research on Fluid Mechanics and or Applied Mathematics, + industry & agencies likely to be involved in planning high-speed lines. Also those involved in railway field for maintenance (both rolling stock and infrastructure), train operators, train manufacturers, and infrastructure managers.

Professor Chris Baker graduated from his doctoral studies at the University of Cambridge, before beginning a Research Fellowship there at St Catharine’s College and the Department of Engineering. In the early 1980s he worked in the Aerodynamics Unit of British Rail Research in Derby, before moving to an academic position in the Department of Civil Engineering at the University of Nottingham. He remained there till 1998 where he was a lecturer, reader and professor with research interests in vehicle aerodynamics, wind engineering, environmental fluid mechanics and agricultural aerodynamics. In 1998 he moved to the University of Birmingham as Professor of Environmental Fluid Mechanics in the School of Civil Engineering. In the early years of the present century he was Director of Teaching in the newly formed School of Engineering and Deputy Head of School. From 2003 to 2008 he was Head of Civil Engineering and in 2008 served for a short time as Acting Head of the College of Engineering and Physical Sciences. He was the Director of the Birmingham Centre for Railway Research and Education 2005-2014. He undertook a 30% secondment to the Transport Systems Catapult Centre in Milton Keynes, as Science Director from 2014 to 2016. He retired at the end of 2017 and took up an Emeritus position.
After obtaining an MSc in Industrial Applied Mathematics in 1974, Terry Johnson initially worked as a research assistant at Sheffield Polytechnic. In 1977 he began his railway aerodynamics career as a graduate entrant to the Aerodynamics Team of British Rail Research in Derby. By the time of railway privatisation in 1996, he had risen to be Head of the Team. There followed 12 years working in the railway consultancies of AEA Technology Rail/DeltaRail. He then joined the Railway Safety and Standards Board in 2008 as their Principal Aerodynamics Engineer, and has worked on a wide range of railway aerodynamics research projects and has maintained and developed aerodynamic aspects in GB
  • Examines the fundamentals and the state-of-the-art of train aerodynamics, beginning with experimental, numerical and analytical tools, and then thoroughly discussing the specific approaches in other sections
  • Features the latest developments and progress in computational aerodynamics and experimental facilities
  • Addresses problems relating to train aerodynamics, from the dimensioning of railway structures and trains, to risk analysis related to safety issues and maintenance
  • Discusses basic flow patterns caused by bridges and embankments

Date de parution :

Ouvrage de 402 p.

15x22.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

170,55 €

Ajouter au panier