Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/physics-for-computer-science-students-with-emphasis-on-atomic-et-semiconductor-physics-2nd-ed-1998/garcia/descriptif_1275863
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1275863

Physics for Computer Science Students (2nd Ed., 2nd ed. 1998. Softcover reprint of the original 2nd ed. 1998) With Emphasis on Atomic and Semiconductor Physics

Langue : Anglais
Couverture de l’ouvrage Physics for Computer Science Students
Not only computer scientists, but also electrical engineers, and others interested in electronics are targeted here, and thus the presentation is directed toward understanding how a computer works, while still providing a broad and effective one-year introduction to classical and modern physics. The first half of the book covers many of the topics found in a standard introductory physics course, but with the selection tailored for use in the second half. This second part then covers the fundamentals of quantum mechanics, multi-electron systems, crystal structure, semiconductor devices, and logic circuits. All the mathematical complexities treated are alleviated by intuitive physical arguments, and students are encouraged to use their own programming to solve problems. The only prerequisite is some knowledge of calculus, and the second part can serve by itself as an introduction to the physics of electronics for students who have had a standard two-semester introductory physics course. In this second edition, much of the material on electronic devices has been brought up to date, and there is a new chapter on integrated circuits and heterostructures.
1 Physical Quantities.- 1.1 Introduction.- 1.2 Quantities and Units.- 1.3 Powers of 10.- 1.4 Accuracy of Numbers.- Problems.- 2 Vectors.- 2.1 Introduction.- 2.2 Vector Components.- 2.3 Unit Vectors.- 2.4 Dot Product.- 2.5 Cross Product.- Problems.- 3 Uniformly Accelerated Motion.- 3.1 Introduction.- 3.2 Speed and Velocity.- 3.3 Acceleration.- 3.4 Linear Motion.- 3.5 Projectile Motion.- Problems.- 4 Newton’s Laws.- 4.1 Introduction.- 4.2 Newton’s Laws.- 4.3 Mass.- 4.4 Weight.- 4.5 Applications of Newton’s Laws.- 4.6 Friction.- Problems.- 5 Work, Energy, and Power.- 5.1 Introduction.- 5.2 Work.- 5.3 Potential Energy.- 5.4 Work Done by a Variable Force.- 5.5 Kinetic Energy.- 5.6 Energy Conservation.- 5.7 Power.- Problems.- 6 Momentum and Collisions.- 6.1 Introduction.- 6.2 Center of Mass.- 6.3 Motion of the Center of Mass.- 6.4 Momentum and its Conservation.- 6.5 Collisions.- Problems.- 7 Rotational Motion.- 7.1 Introduction.- 7.2 Measurement of Rotation.- 7.3 Rotational Motion.- 7.4 Equations of Rotational Motion.- 7.5 Radial Acceleration.- 7.6 Centripetal Force.- 7.7 Orbital Motion and Gravitation.- Problems.- 8 Rotational Dynamics.- 8.1 Introduction.- 8.2 Moment of Inertia and Torque.- 8.3 Rotational Kinetic Energy.- 8.4 Power.- 8.5 Angular Momentum.- 8.6 Conservation of Angular Momentum.- Problems.- 9 Kinetic Theory of Gases and the Concept of Temperature.- 9.1 Introduction.- 9.2 Molecular Weight.- 9.3 Thermometers.- 9.4 Ideal Gas Law and Absolute Temperature.- 9.5 Kinetic Theory of Gas Pressure.- 9.6 Kinetic Theory of Temperature.- 9.7 Measurement of Heat.- 9.8 Specific Heats of Gases.- 9.9 Work Done by a Gas.- 9.10 First Law of Thermodynamics.- Supplement 9-1: Maxwell-Boltzmann Statistical Distribution.- Problems.- 10 Oscillatory Motion.- 10.1 Introduction.- 10.2 Characterization of Springs.- 10.3 Frequency and Period.- 10.4 Amplitude and Phase Angle.- 10.5 Oscillation of a Spring.- 10.6 Energy of Oscillation.- Problems.- 11 Wave Motion.- 11.1 Introduction.- 11.2 Wavelength, Velocity, Frequency, and Amplitude.- 11.3 Traveling Waves in a String.- 11.4 Energy Transfer of a Wave.- Problems.- 12 Interference of Waves.- 12.1 Introduction.- 12.2 The Superposition Principle.- 12.3 Interference from Two Sources.- 12.4 Double Slit Interference of Light.- 12.5 Single Slit Diffraction.- 12.6 Resolving Power.- 12.7 X-Ray Diffraction by Crystals: Bragg Scattering.- 12.8 Standing Waves.- Problems.- 13 Electrostatics.- 13.1 Introduction.- 13.2 Attraction and Repulsion of Charges.- 13.3 Coulomb’s Law.- 13.4 Charge of an Electron.- 13.5 Superposition Principle.- Problems.- 14 The Electric Field and the Electric Potential.- 14.1 Introduction.- 14.2 The Electric Field.- 14.3 Electrical Potential Energy.- 14.4 Electric Potential.- 14.5 The Electron Volt.- 14.6 Electromotive Force.- 14.7 Capacitance.- Problems.- 15 Electric Current.- 15.1 Introduction.- 15.2 Motion of Charges in an Electric Field.- 15.3 Electric Current.- 15.4 Resistance and Resistivity.- 15.5 Resistances in Series and Parallel.- 15.6 Kirchhoff’s Rules.- 15.7 Ammeters and Voltmeters.- 15.8 Power Dissipation by Resistors.- 15.9 Charging a Capacitor—RC Circuits.- Problems.- 16 Magnetic Fields and Electromagnetic Waves.- 16.1 Introduction.- 16.2 Magnetic Fields.- 16.3 Force on Current-Carrying Wires.- 16.4 Torque on a Current Loop.- 16.5 Magnetic Dipole Moment.- 16.6 Force on a Moving Charge.- 16.7 The Hall Effect.- 16.8 Electromagnetic Waves: The Nature of Light.- Problems.- 17 The Beginning of the Quantum Story.- 17.1 Introduction.- 17.2 Blackbody Radiation.- 17.3 The Photoelectric Effect.- 17.4 Further Evidence for the Photon Theory.- Supplement 17-1: Momentum of the Photon.- Problems.- 18 Atomic Models.- 18.1 Introduction.- 18.2 The Rutherford Model.- 18.3 The Spectrum Of Hydrogen.- 18.4 The Bohr Atom.- 18.5 The Franck-Hertz Experiment.- Problems.- 19 Fundamental Principles of Quantum Mechanics.- 19.1 Introduction.- 19.2 De Broglie’s Hypothesis and Its Experimental Verification.- 19.3 Nature of the Wave.- 19.4 The Uncertainty Principle.- 19.5 Physical Origin of the Uncertainty Principle.- 19.6 Matter Waves and the Uncertainty Principle.- 19.7 Velocity of the Wave Packet: Group Velocity.- 19.8 The Principle of Complementarity.- Problems.- 20 An Introduction to the Methods of Quantum Mechanics.- 20.1 Introduction.- 20.2 The Schrödinger Theory of Quantum Mechanics.- 20.3 Application of the Schrödinger Theory.- Problems.- 21 Quantum Mechanics of Atoms.- 21.1 Introduction.- 21.2 Outline of the Solution of the Schrödinger Equation for the H Atom.- 21.3 Physical Significance of the Results.- 21.4 Space Quantization: The Experiments.- 21.5 The Spin.- 21.6 Some Features of the Atomic Wavefunctions.- 21.7 The Periodic Table.- Problems.- 22 Crystal Structures and Bonding in Solids.- 22.1 Introduction.- 22.2 Crystal Structures.- 22.3 Crystal Bonding.- Problems.- 23 Free Electron Theories of Solids.- 23.1 Introduction.- 23.2 Classical Free Electron (CFE) Model.- 23.3 Quantum-Mechanical Free Electron Model (QMFE).- Supplement 23-1: The Wiedemann-Franz Law.- Supplement 23-2: Fermi-Dirac Statistics.- Problems.- 24 Band Theory of Solids.- 24.1 Introduction.- 24.2 Bloch’s Theorem.- 24.3 The Kronig-Penney Model.- 24.4 Tight-Binding Approximation.- 24.5 Conductors, Insulators, and Semiconductors.- 24.6 Effective Mass.- 24.7 Holes.- Problems.- 25 Semiconductors.- 25.1 Introduction.- 25.2 Intrinsic Semiconductors.- 25.3 Extrinsic or Impurity Semiconductors.- 25.4 Carrier Transport in Semiconductors.- 25.5 Photoconductivity.- 25.6 Compound Semiconductors.- Problems.- 26 Semiconductor Devices.- 26.1 Introduction.- 26.2 Metal-Metal Junction: The Contact Potential.- 26.3 The Semiconductor Diode.- 26.4 The Bipolar Junction Transistor (BJT).- 26.5 Field-Effect Transistors (FET).- 26.6 Optoelectronic Devices.- Problems.- 27 Some Basic Logic Circuits of Computers.- 27.1 Introduction.- 27.2 Rudiments of Boolean Algebra.- 27.3 Electronic Logic Circuits.- 27.4 Semiconductor Gates.- 27.5 NAND and NOR Gates.- 27.6 Other Gates: RTL, TTL, and CMOS.- 27.7 Memory Circuits.- 27.8 Clock Circuits.- Problems.- 28 The Technology of Manufacturing Integrated Circuits.- 28.1 Introduction.- 28.2 Semiconductor Purification: Zone Refining.- 28.3 Single-Crystal Growth.- 28.4 The Processes of IC Production.- 28.5 Electronic Component Fabrication on a Chip.- 28.6 Conclusion.- Problems.- Photo Credits.

Presents many of the topics of a standard introductory physics course in the first section of the book, but with the selection tailored to be of use in the second half, which develops the physics of semiconductor devices * Incorporates updated material regarding electronic devices * Includes new chapter on integrated circuits and heterostructures

Date de parution :

Ouvrage de 560 p.

20.3x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 58,01 €

Ajouter au panier