Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/nonlinear-nonlocal-and-fractional-turbulence/descriptif_4251829
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4251829

Nonlinear, Nonlocal and Fractional Turbulence, 1st ed. 2020 Alternative Recipes for the Modeling of Turbulence

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Nonlinear, Nonlocal and Fractional Turbulence

Experts of fluid dynamics agree that turbulence is nonlinear and nonlocal. Because of a direct correspondence, nonlocality also implies fractionality. Fractional dynamics is the physics related to fractal (geometrical) systems and is described by fractional calculus. Up-to-present, numerous criticisms of linear and local theories of turbulence have been published. Nonlinearity has established itself quite well, but so far only a very small number of general nonlocal concepts and no concrete nonlocal turbulent flow solutions were available.

 

This book presents the first analytical and numerical solutions of elementary turbulent flow problems, mainly based on a nonlocal closure. Considerations involve anomalous diffusion (Lévy flights), fractal geometry (fractal-?, bi-fractal and multi-fractal model) and fractional dynamics. Examples include a new ?law of the wall? and a generalization of Kraichnan?s energy-enstrophy spectrum that is in harmony with non-extensive and non-equilibrium thermodynamics (Tsallis thermodynamics) and experiments. Furthermore, the presented theories of turbulence reveal critical and cooperative phenomena in analogy with phase transitions in other physical systems, e.g., binary fluids, para-ferromagnetic materials, etc.; the two phases of turbulence identifying the laminar streaks and coherent vorticity-rich structures.

 

This book is intended, apart from fluids specialists, for researchers in physics, as well as applied and numerical mathematics, who would like to acquire knowledge about alternative approaches involved in the analytical and numerical treatment of turbulence.

Introduction.- Reynolds Averaging of the Navier-Stokes Equations (RANS).- The closure problem.- Boussinesq’s ‘constitutive law’.- First turbulence models for shear flows.- Review of nonlinear and nonlocal models.- The Difference-Quotient Turbulence Model (DQTM).- Self-similar RANS.- Elementary turbulent shear flow solutions.- Thermodynamics of turbulence.- Turbulence – a cooperative phenomenon.- Conclusions and outlook.
Peter W. Egolf made an apprenticeship as a heating designer and studied at the University of Applied Sciences of Central Switzerland heating and air conditioning. After working in an industrial R&D laboratory, he studied physics at the Swiss Federal Institute of Technology (ETH Zurich). In 1984 he obtained his diploma in Dynamical Meteorology. Then he entered a R&D division at Gebrüder Sulzer AG in Winterthur, where he invented and investigated industrial air conditioning systems. At an advanced age he had the opportunity to make a PhD in a Noble Laureate ’family’ in low-temperature physics (superfluidity). In 1989 Egolf introduced the Lagrange-Hamilton description of the free surface of quantum fluid He II. In 1990 he obtained his PhD at ETHZ with an innovation award. In the late 1980’s he invented the Difference-Quotient Turbulence Model (DQTM). From 1990 on a ten years’ employment at the Swiss Federal Institute for Materials Testing and Research followed in the field ofenergy and buildings. In 1994 he entered the field of research on ice slurries. In 1998 Egolf created the International Working Party on Ice Slurries of the International Institute of Refrigeration (IIR) and was its first President. From 2000-2018 he was the head of the Theory and Numerics Division (SIT) of the Thermal Sciences Institute at the University of Applied Sciences of Western Switzerland. He initiated a second International Working Party of the IIR (on Magnetic Refrigeration), and for ten years he was serving as its President. Furthermore, he was awarded the first prices of the Swiss Technology Awards 1996 and 2006. Today, Peter W. Egolf is retired, however, he is still involved in the study of fundamental research on fractional turbulence and nonextensive thermodynamics of turbulence. He was a main organizer of eight international conferences. Egolf invented or co-invented a new melting/freezing model, an innovative storage device for ice slurries, a translucent solar therma
Written by experts in the field, it provides analytical and numerical solutions of nonlocal turbulent flow problems based on the authors' scientific research work Gives recipes for generalizing local into nonlocal turbulence models Contains novel approaches based on the nonextensive thermodynamics of turbulence Outlines analogies between turbulence and other physical fields (magnetisation, vortisation, etc.)

Ces ouvrages sont susceptibles de vous intéresser