Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/nonlinear-and-nonequilibrium-dynamics-of-quantum-dot-optoelectronic-devices/descriptif_3970735
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3970735

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices, 1st ed. 2015 Springer Theses Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.



Introduction.- Theory of Quantum-Dot Optical Devices.- Quantum-Dot Laser Dynamics.- Quantum-Dot Optical Amplifiers.- Summary and Outlook.


Benjamin Lingnau received his B.Sc in physics in 2009 and his M.Sc in 2011 from TU Berlin. He graduated and received the Dr. rer. nat. from TU Berlin in 2015. His scientific interests include nonlinear laser dynamics and dynamics of semiconductor quantum-dot optoelectronic devices. He has authored and co-authored 18 peer-reviewed scientific papers.

Nominated as an outstanding Ph.D. thesis by the TU Berlin, Germany Gives an in-depth theoretical description of semiconductor quantum-dot optoelectronic devices Discusses the unique dynamics of the quantum-dot gain material and its potential for novel applications Provides model validation by comparison of simulations with experimental results using several examples Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 193 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 193 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier

Ces ouvrages sont susceptibles de vous intéresser