Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/non-monotonic-approach-to-robust-h-control-of-multi-model-systems/descriptif_4183311
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4183311

Non-monotonic Approach to Robust H∞ Control of Multi-model Systems Emerging Methodologies and Applications in Modelling, Identification and Control Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Non-monotonic Approach to Robust H∞ Control of Multi-model Systems

Non-monotonic Approach to Robust H8 Control of Multi-model Systems focuses on robust analysis and synthesis problems for multi-model systems based on the non-monotonic Lyapunov Functionals (LFs) approach that enlarges the stability region and improves control performance. By fully considering the diversity of switching laws, the multi-step time difference, the multi-step prediction, and the expansion of system dimension, the non-monotonic LF can be properly constructed. The focus of this book is placed on the H8 state feedback control, H8 filtering and H8 output feedback control for multi-model systems via a non-monotonic LF approach.

The book's authors provide illustrative examples to show the feasibility and efficiency of the proposed methods, along with practical examples that demonstrate the effectiveness and potential of theoretical results.

1. Introduction 2. Robust H- State Feedback Controller design of discrete-time T-S Fuzzy Systems: A Non-monotonic Approach 3. Robust H- Filtering of T-S Fuzzy Systems: A Non-monotonic Approach 4. Robust H- Output Feedback Control for T-S Fuzzy Systems: A Non-monotonic Approach 5. H- State feedback Control of Discrete-time Switched Systems via One-step ahead Lyapunov Function Approach 6. Stability, l2-Gain and Robust H- Control of Switched Systems via Multi-step ahead Non-monotonic Approach 7. H- filtering for Discrete-time Switched Systems via Multi-step ahead Non-monotonic Approach 8. H- Output feedback Control of Discrete-time Switched Systems via Multi-step ahead Non-monotonic Approach 9. Robust H- state feedback Control of Discrete-time Non-homogenous Markovian Jump Systems via Multi-step Lyapunov Function Approach 10. Robust H- filtering of Discrete-time Non-homogenous Markovian Jump Systems via Multi-step Lyapunov Function Approach 11. Conclusions

Control engineers, signal processing engineers, mathematicians and physicians, postgraduate students majoring in control engineering, signal processing, nonlinear systems, switched systems and applied mathematics
Jiwei Wen received his Ph.D. degree in Control Science and Control Engineering from Jiangnan University, Wuxi, China, in 2011. From 2015 to 2016, he was a visiting scholar with the Department of Electrical and Computer Engineering, University of Auckland. Currently, he is an associate professor of School of Internet of Things Engineering, Jiangnan University, Wuxi, China. He is also a researcher in the Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, China. His research interests include non-monotonic filtering and control approach, stochastic switched system, model predictive control and T-S fuzzy modelling and control. He has/had served as reviewer of a number of international journals. He is an Associate Editor of the International Journal of Sensors, Wireless Communications and Control.
Alireza Nasiri holds a PhD degree from the University of Auckland, New Zealand. He is currently Assistant Professor in the Department of Electrical and Computer Engineering at Hormozgan University and vice president of Hormozgan Science and Technology Park, Iran. He received his B.Sc. and M.Sc. degrees in electrical engineering from the University of Tehran and Iran University of Science and Technology, respectively. His research interests are nonlinear control, fuzzy control, H8 control, active noise control and fault tolerant control.
Sing Kiong Nguang is a professor with the Department of Electrical and Computer Engineering at the University of Auckland, Auckland, New Zealand. He received the B.E. (with first class honors) and the Ph.D. degree from the Department of Electrical and Computer Engineering at the University of Newcastle, Callaghan, Australia, in 1992 and 1995, respectively. He has published over 300 refereed journal and conference papers on nonlinear control design, nonlinear control systems, nonlinear time delay systems, nonlinear sampled-data systems, networked control systems, biomedical systems modelling, fuzzy
  • Offers tools for the analysis and design of control processes where the process can be represented by multi-models
  • Presents a comprehensive explanation of recent developments in non-monotonic approaches to robust H-infinity control of multi-model systems
  • Gives numerical examples and simulation results in each chapter to demonstrate engineering potential

Date de parution :

Ouvrage de 222 p.

15x22.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

116,98 €

Ajouter au panier