Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/introduction-to-materials-for-advanced-energy-systems/descriptif_3833297
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3833297

Introduction to Materials for Advanced Energy Systems, 1st ed. 2019

Langue : Anglais

Auteur :

Couverture de l’ouvrage Introduction to Materials for Advanced Energy Systems

This first of its kind text enables today?s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems.

Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework.

This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists.

  •          Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading
  •          Provides comprehensive coverage of materials-based solutions for major and emerging energy systems
  •          Brings together diverse subject matter by integrating theory with engaging insights

 

Preface

1 Materials based solutions to advanced energy systems

           Abstract

1.1  Advanced energy technology and contemporary issues

1.1.1        Challenges and concerns

1.1.2        The role of the advanced materials

1.1.3        Solutions for future energy systems

1.2  Fundamentals of energy systems

1.2.1        Energy and service

1.2.2        Energy process characterization

1.2.2.1  The laws of thermodynamics

1.2.2.2  Macroscopic and microscopic energy systems

1.2.2.3  Entropy and enthalpy

1.2.2.4  Chemical kinetics

1.2.2.5  Energy availability

 

1.2.3        Energy calculations and accounting

1.2.3.1  Energy efficiency

1.2.3.2  Heating values

1.2.4        General energy devices

1.2.4.1  Conversion devices

1.2.4.2  Energy storage

1.2.4.3  Systems engineering

1.2.4.4  Electricity

1.2.5        Sustainable energy

1.3  Materials development for advanced energy systems

1.3.1        Functional surface technologies

1.3.2        Materials integration in sustainable energy systems

1.3.3        Higher-performance materials

1.3.4        Sustainable manufacturing of materials

1.3.5        Materials and process development acceleration tools   

1.4  Summary

            Reference

            Exercises

2 Fundamentals of materials used in energy systems

   Abstract

2.1 Structures of solids

2.1.1 Atomic structures

2.1.2 Crystal structures

2.1.2.1 Structures for elements

2.1.2.2 Structures for compounds

2.1.2.3 Solid solutions

2.1.3 Crystal diffraction

2.1.3.1 Phase difference and Bragg’s law

2.1.3.2 Scattering

2.1.3.3 Reciprocal space

2.1.3.4 Wave vector representation

2.1.4 Defects in solids

2.1.4.1 Point defects

2.1.4.2 Line defects

2.1.4.2.1 Edge dislocations

2.1.4.2.2 Screw dislocations

2.1.4.2.3 Burger’s vector and burger circuit

2.1.4.2.4 Dislocation motion

2.1.4.3 Planar defects

2.1.4.3.1 Grain boundaries

2.1.4.3.2 Twin boundaries

2.1.4.4 Three-dimensional defects

2.1.5 Diffusion in solids

2.1.5.1 Atomic theory

2.1.5.2 Random walk

2.1.5.3 Other mass transport mechanisms

2.1.5.3.1 Permeability versus diffusion

2.1.5.3.2 Convection versus diffusion

2.1.5.4 Mathematics of diffusion

2.1.5.4.1 Steady state diffusion

2.1.5.4.2 Non-steady state diffusion

2.1.6 Electronic structure of solids

2.1.6.1 Waves and electrons

2.1.6.1.2 Representation of waves

2.1.6.1.2 Matter waves

2.1.6.1.3 Superposition

 2.1.6.1.4 Electron waves

2.1.6.2 Quantum mechanics

2.1.6.3 Electron energy band representations

2.1.6.4 Real energy band structures

2.1.6.5 Other aspects of electron energy band structure

2.2 Phase equilibria

2.2.1 The Gibbs phase rule

2.2.1.1 The phase rule on equilibrium among phases<

2.2.1.2 Applications of the phase rule

2.2.1.3 Construction of phase diagrams

2.2.1.4 The tie line principle

2.2.1.5 The lever rule

2.2.2 Nucleation and growth of phases

2.2.2.1 Thermodynamics of phase transformations

2.2.2.2 Nucleation

2.3 Mechanical properties

2.3.1 Elasticity relationships

2.3.1.1 Ture versus engineering strain

2.3.1.2 Nature of elasticity and Young’s Modulus

2.3.1.3 Hook’s law

2.3.1.4 Poisson’s ratio

2.3.1.5 Normal forces

2.3.2 Plasticity observations

2.3.3 Role of dislocation in deformation of crystalline materials

2.3.4 Deformation of noncrystalline materials

2.3.4.1 Thermal behavior of amorphous solids

2.3.4.2 Time-dependent deformation of amorphous materials

2.3.4.3 Models for network

2.3.4.4 Elastomers

2.4 Electronic properties of materials

2.4.1 Occupation of electronic states

2.4.1.1 Density of states function

2.4.1.2 The Fermi-Dirac distribution function

2.4.1.3 Occupancy of electronic states

2.4.2 Position of the Fermi energy

2.4.3 Electronic properties of metals

2.4.3.1 Free electron theory for electrical conduction

2.4.3.2 Quantum theory of electronic conduction

2.4.3.3 Superconductivity

2.4.4 Semiconductors

2.4.4.1 Intrinsic semiconductors

2.4.4.2 Extrinsic semiconductors

2.4.4.3 Semiconductor measurements

2.4.5 Electrical behavior of organic materials

2.4.6 Junctions and devices and the nanoscale

2.4.6.1 Junctions

2.4.6.1.1 Metal–metal junctions

2.4.6.1.2 Metal–semiconductor junctions

2.4.6.1.3 Semiconductor–semiconductor PN junctions

2.4.6.2 Selected devices

2.4.6.2.1 Passive devices

2.4.6.2.2 Active devices

2.4.6.3 Nanostructures and nanodevices

2.4.6.3.1 Heterojunction nanostructures

2.4.6.3.2 2-D and 3-D nanostructures

2.5 Computational modeling of materials

2.5.1 The challenge of complexity

2.5.2 Materials design with predictive capability

2.5.3 Materials modeling approaches

2.6 Advanced experimental techniques for materials characterization

2.6.1 Dynamic mechanical spectroscopy

2.6.2 Nanoindentation

2.6.3 Light microscopy

2.6.4 Electron microscopy

2.6.5 Atom probe tomography

2.6.6 Advanced X-ray characterization

2.6.7 Neutron scattering

2.7 Integrated materials process control

2.7.1 Process control and its constituents

2.7.1.1 Sensing techniques

2.7.1.2 Input parameters for combustion control

2.7.2 Diagnostic techniques

2.3.2.1 Optical diagnostics

2.3.2.2 Solid-state sensors

2.8 Summary

           Reference

           Exercises

3 Advanced materials enable energy production from fossil fuels

               Abstract

            3.1 Materials technology status and challenges in fossil energy systems

3.1.1 Boilers

3.1.2 Steam turbines

3.1.3 Gas turbines

3.1.4 Gasifiers

3.1.5 CO2 capture and storage

3.1.6 Perspectives

3.2 Materials for ultra-supercritical applications

3.2.1 High temperature alloys

            3.2.2 Advanced refractory materials for slagging gasifiers

            3.2.3 Breakthrough materials

            3.3 Coatings and protection materials for steam system

3.3.1 High temperature and high pressure coatings

                        3.3.2 Oxygen ion selective ceramic membranes for carbon capture

           3.4 Materials for deep oil and gas well drilling and construction

                        3.4.1 High stress and corrosion resistant propping agents

                        3.4.2 Erosion- and corrosion-resistant coatings

                        3.4.3 Wear resistant coatings

                        3.4.4 High strength and corrosion resistant alloys for use in well

                                 casings and deep well drill pipe

           3.5 Materials for sensing in harsh environments

                       References

                       Exercises

4        Materials-based solutions to solar energy system

   Abstract

4.1  Solar energy technologies

4.1.1        Photovoltaic technologies

4.1.1.1  Residential photovoltaic

4.1.1.2  Utility-scale flat-plate thin film photovoltaic

4.1.1.3  Utility-scale photovoltaic concentrators

4.1.2        Solar thermal technologies

4.1.2.1  Unglazed collectors

4.1.2.2  Glazed collectors

4.1.2.3  Parabolic trough

4.1.2.4  Vacuum tube collectors

4.1.2.5  Linear Fresnel lens reflectors

4.1.2.6 Solar Stirling engine

4.2  Photovoltaic materials and devices

4.2.1        Crystalline silicon PV cells

4.2.1.1 Mono-crystal silicon PVs

4.2.1.2  Polycrystalline silicon PVs

4.2.1.3 Emitter wrap-through cells

4.2.2        Thin-film PV cells

4.2.2.1 Amorphous Silicon Cells

4.2.2.1.1 Amorphous-Si, double or triple junctions

4.2.2.1.2 Tandem amorphous-Si and multi-crystalline-Si

4.2.2.2 Ultra-thin silicon wafers

4.2.2.3 Cadmium telluride and cadmium sulphide

4.2.2.4 Copper indium selenide and copper indium gallium selenide

4.2.3        Compound semiconductor PV cells

4.2.3.1 Space PV cells

                                                        4.2.3.2 Light absorbing dyes

                                                        4.2.3.3 Organic and polymer PV

                                                       4.2.3.4 Flexible plastic organic transparent cells

                                            4.2.4 Nanotechnology for PV cell fabrication

                                                       4.2.4.1 Silicon nanowires

                                                      4.2.4.2 Carbon nanotubes

                                                       4.2.4.3 Graphene-based solar cells

                                                       4.2.4.4 Quantum dots

                                                       4.2.4.5 Hot carrier solar cell

                                                      4.2.4.6 Nanoscale surfaces reduce reflection and increase

                                                                 capture of the full spectrum of sunlight

4.2.5 Hybrid solar cells

4.2.5.1 Hybrid organic-metal PVs

4.2.5.2 Hybrid organic-organic PVs

4.2.6 Inexpensive plastic solar cells or panels that are mounted on

         curved surfaces

4.3 Advanced materials for solar thermal collectors

4.3.1 Desirable features of solar thermal collector materials

4.3.1.1 Transparent cover

4.3.1.2 Insulation

4.3.1.3 Evacuated-tube collectors

4.3.2 Polymer materials in solar thermal collectors

4.3.3 Corrosion resistant materials in contact with molten salts

4.4 Reflecting materials for solar cookers

4.5 Optical materials for absorbers

4.5.1 Metals

4.5.2 Selective coatings

4.5.2.1 Intrinsic absorption coatings

4.5.2.2 Semiconductor-metal tandems

4.5.2.3 Multilayer absorbers

4.5.2.4 Metal-dielectric composite coatings

4.5.2.5 Surface texturing

4.5.2.6 Selectively solar-transmitting coating on a blackbody-like absorber

4.5.3 Heat pipes

4.5.4 Metamaterial solar absorbers

4.5.4.1 Metal-dielectric nanocomposites with tailored plasmonic response

4.5.4.2 Light weight broadband nanocomposite perfect absorbers

4.3.4.3 Prospects and future trends

4.6 Thermal energy storage materials

4.6.1 Sensible thermal energy storage

4.6.2 Underground thermal energy storage

4.6.3 Phase change materials

4.6.4 Thermal energy storage via chemical reactions

                  Reference

                  Exercises

5 Advanced materials enable renewable geothermal energy capture and generation

            Abstract

            5.1 Geothermal technologies

5.1.1 Geothermal resources for geothermal energy development

5.1.2 Geothermal electricity

5.1.3 Enhanced geothermal systems and other advanced geothermal technologies

5.1.4 Direct use of geothermal energy

5.2 Hard materials for downhole rock drilling

5.3 Advanced cements for geothermal wells

5.4 Geothermal heat pumps

5.4.1 Pumping materials

5.4.2 Pumping technology

5.4.3 Heat pump applications

5.5 Materials for transmission pipelines and distribution netorks

5.6 Materials for heat exchange systems

5.6.1 Heat exchange fluids

5.6.2 Heat exchanger coatings

5.6.3 Polymer heat exchangers

5.6.4 Heat convector materials

5.6.5 Refrigeration materials for cooling systems

            5.7 Corrosion protection and material selection for geothermal systems

            Reference

            Exercises

6 Advanced materials enable renewable wind energy capture and generation

            Abstract

            6.1 Wind resources

                        6.1.1 Wind quality

                        6.1.2 Variation of wind speed with elevation

                        6.1.3 Air density

                        6.1.4 Wind forecasting

                        6.1.5 Offshore wind

                        6.1.6 Maximum wind turbine efficiency: The Betz ratio

6.2 Materials requirements of wind machinery and generating systems

            6.2.1 Driven components

                     6.2.1.1 Shafts

                     6.2.1.2 Bearings

                     6.2.1.3 Couplings

                     6.2.1.4 Gear boxes

                     6.2.1.5 Generators

            6.2.2 Tower

                      6.2.2.1 Tower structure

                      6.2.2.2 Tower flange

                      6.2.2.3 Power electronics

            6.2.3 Rotor

                     6.2.3.1 Blade

                     6.2.3.2 Blade extender

                     6.2.3.3 Hub

                     6.2.3.4 Pitch drive

            6.2.4 Nacelle

                     6.2.4.1 Case

                     6.2.4.2 Frame

                     6.2.4.3 Anemometer

                     6.2.4.4 Brakes

                     6.2.4.5 Controller

                     6.2.4.6 Convertor

                     6.2.4.7 Cooling system

                     6.2.4.8 Sensors

                     6.2.4.9 Yaw drive

            6.2.5 Balance-of-station subsystems

            6.2.6 System design challenges

6.3 Wind turbine types and structures

6.3.1 Horizontal-axis wind turbines

6.3.2 Vertical-axis wind turbines

6.3.3 Upwind wind turbines and downwind wind turbines

6.3.4 Darrieus turbines

6.3.5 Savonius turbines

6.3.6 Giant Multi-megawatt turbines

6.4 General materials used in wind turbines

                      6.4.1 Cast iron and steel

                      6.4.2 Composite materials

                      6.4.3 Rare earth elements in magnet

                      6.4.4 Copper

                      6.4.5 Reinforced concrete

6.5 Light weight composite materials for wind turbine blades

                     6.5.1 Reinforcement

                     6.5.2 Matrix      

6.6 Smart and stealth wind turbine blade materials

6.7 Permanent-magnet generators for wind turbine applications

6.8 Future prospects

      Reference

      Exercises

7 Advanced materials for ocean energy and hydropower

7.1 Materials requirements for ocean energy technologies

7.1.1 Tidal power

7.1.2 Ocean current

7.1.3 Wave energy

7.1.4 Ocean thermal energy

7.1.5 Salinity gradient

7.2 Advanced materials and devices for ocean energy

                        7.2.1 Structure & prime mover

                        7.2.2 Foundations & moorings

                        7.2.3 Power take off

                        7.2.4 Control

            7.2.5 Installation

            7.2.6 Connection

            7.2.7 Operations & maintenance

7.3 Wave energy converters

                        7.3.1 Types of WEC

7.4 Tidal energy converters

                        7.4.1. Types of TEC

            7.4.2. Further Permutations

7.5 Arrays

7.6 Challenges faced by the ocean energy

                        7.6.1 Predictability

                        7.6.2 Manufacturability

                        7.6.3 Installability

                        7.6.4 Operability

                        7.6.5 Survivability

            7.6.6 Reliability

            7.6.7 Affordability

7.7 Materials requirements for hydropower system

            7.7.1 Retaining structure materials for dams and dikes

            7.7.2 Structural materials and surface coatings for turbines runners, draft tubes

                     and penstocks      

            Reference

            Exercises

8 Biomass for bioenergy

8.1 Materials requirements for biomass technologies

                        8.1.1 Biomass for power and heat

                        8.1.2 Biogas

                        8.1.3 Biofuels

                        8.1.4 Biorefineries

8.2 Corrosion resistant materials for biofuels

                        8.2.1 Metal and its alloys

                        8.2.2 Elastomers

8.3 Nanocatalysts for conversion of biomass to biofuel

                        8.3.1 Nanocatalysts for biomass gasification

                        8.3.2 Nanocatalysts for biomass liquefaction 

8.4 Coal-to-liquid fuels

                        8.4.1 Basic chemistry

            8.4.2 CTL technology options

8.5 Materials for combustion processes

8.6 Materials for capturing CO2 for using as a nutrient to cultivate alga

8.7 Materials for water filtration and desalination

Reference

Exercises

9 Hydrogen and fuel cells

9.1 Introduction

9.2 Hydrogen generation technology

 9.2.1 Steam methane reforming

 9.2.2 Electrolysis

9.3 Hydrogen conversion and storage technology

                        9.3.1 Fuel cells

                        9.3.2 Hydrogen gas turbines

            9.3.3 Compressed hydrogen gas

                        9.3.4 Liquid hydrogen storage in tanks

                        9.3.5 Physisorption of hydrogen and its storage in solid structures

9.4 Materials-based hydrogen storage

 9.4.1 Nanoconfined hydrogen storage materials

 9.4.2 Complex hydrides

 9.4.3 Reversible hydrides

 9.4.4 Hydrogen storage in carbonaceous materials

                        9.4.5 Hydrogen storage in zeolites and glass microspheres

                        9.4.6 Hydrogen storage in organic frameworks

                        9.4.7 Hydrogen Storage in Polymers

9.4.8 Hydrogen storage in formic acid

9.5 Fuel cell materials

                        9.5.1 Anode Materials

                        9.5.2 Cathode Materials

                        9.5.3 Electrolytes

                        9.5.4 Catalysts (Catalysts for the oxygen reduction reaction)

                        9.5.5 Sputtering Targets

            9.5.6 Current Collectors (Higher-temperature proton conducting materials)

            9.5.7 Support Materials (Low-cost materials resistant to hydrogen-assisted

                     cracking and embrittlement)

9.6 Applications of fuel cells

9.6.1 Alkaline Fuel Cells

9.6.2 Proton Exchange Membrane Fuel Cells

                        9.6.3 Direct Methanol Fuel Cells

9.6.4 Phosphoric Acid Fuel Cells

9.6.5 Molten Carbonate Fuel Cells

9.6.6 Solid Oxide Fuel Cells

                        9.6.7 Solid oxide fuel cells

                        9.6.8 Polymer electrolyte membrane fuel cells

Reference

Exercises

10 Role of materials to advanced nuclear energy

            Abstract

10.1 Fission and fusion technologies

10.1.1 Nuclear reactors

            10.1.2 Nuclear power fuel resources (fuel cycle)

            10.1.3 Fusion energy

                                    10.1.3.1 Magnetic fusion energy

                                    10.1.3.2 Inertial fusion energy

10.2 Materials selection criteria

                        10.2.1 General considerations

                        10.2.2 General mechanical properties

                                    10.2.2.1 Fabricability

                                                10.2.2.2 Dimension stability

                                                10.2.2.3 Corrosion resistance

                                                10.2.2.4 Heat transfer properties

                        10.2.3 Special considerations

                                                10.2.3.1 Neutronic properties

                                                10.2.3.2 Susceptibility to induced radioactivity

                                                10.2.3.3 Radiation stability

10.3 Materials for reactor components

 10.3.1 Structure and fuel cladding materials

             10.3.1.1 Advanced radiation resistant structural materials

                         10.3.1.1.1 Ultrahigh strength alloys

             10.3.1.1.1 Ultrahigh toughness ceramic composites

                        10.3.1.2 Advanced refractory, ceramic, graphitic or coated materials

                        10.3.1.3 Corrosion and damage resistant materials

                        10.3.1.4 Pressure vessel steel

             10.3.1.4.1 Corrosion resistant nickel base alloys

             10.3.1.4.2 Dimensionally stable zirconium fuel cladding

                                    10.3.1.5 Ultra high temperature resistance structural materials

                         10.3.2 Moderators and reflectors

                         10.3.3 Control materials

                         10.3.4 Coolants

                          10.3.5 Shielding materials

     10.4 Nuclear fuels

                         10.4.1 Metallic fuels

             10.4.2 Ceramic fuels

                10.5 Cladding materials

^ Zirconium-based cladding 3-14

                        10.5.2 Iron-based cladding 3-19

                        10.5.3 Advanced gas-cooled reactor cladding 3-19

     10.6 Low energy nuclear reactions in condensed matter

                 10.7 Advanced computational materials performance modeling

      References 

      Exercises  

11. Emerging materials for energy harvesting

11. 1 Introduction

11.2 Thermoelectric Materials

11.2.1 Characterizations of thermoelectric Materials

11.2.2 Structures

            Oxides and Silicides

Half-Heusler compounds

Skutterudite Materials

                        Clatherate Materials

11.2.3 Properties

Thermal Conductivity

Fermi Surface

Morphology

             11.2.4 Nano-materials

             11.2.5 Applications

11.3 Piezoelectric Materials

            11.3.1 Fundamentals of piezoelectricity

              11.3.2 Equivalent circuit of a piezoelectric harvester

              11.3.4 Advances of piezoelectric materials

                       Ceramics

                         Single crystals

                         Polymers

                          Composites

            11.3.5 Energy harvesting piezoelectric devices

               11.3.6 Applications

11.4 Pyroelectric materials

            11.4.1 The pyroelectric effect

            11.4.2 Types of pyroelectric materials

            11.4.3 Pyroelectric cycles for energy harvesting

            11.4.4 Pyroelectric harvesting devices

            11.4.5 Applications

11.5 Magnetic Induction system

            11.5.1 Architecture and Operational Mechanism

11.5.2 Magnet-through-coil Induction

11.5.2.1 Geometry

11.5.2.2 Magnetic flux Generated by the Bar Magnet

11.5.2.3 Coil Inductance and Resistance

11.5.2.4 Voltage and Power Generation

11.5.3 Magnet-across-coils Induction

11.5.3.1 Geometry

11.5.3.2 Magnetic Field Generated by the Magnets

11.5.3.3 Magnetic Field Generated by Coil Current

11.5.3.4 Coil Self-Inductance, Mutual Inductance, and Resistance

11.5.3.5 Voltage and Power Generation

11.5.4 Magnetic materials

11.5.5 Magnetic devices

11.5.6 Applications

      11.6 Mechanoelectric energy harvesting materials

      References 

      Exercises  

12 Perspectives and future trends

     12.1 Sustainability

12.1.1 Efficient use of energy-intensive materials

12.1.2 Retention of strategic materials

12.1.3 Extraction technologies to recycle strategic materials

12.1.4 Green manufacturing and energy production processes

12.1.5 Mitigation of negative impacts of energy technology and economic growth

    12.2 Metamaterials and nanomaterials for energy systems  

    12.3 Artificial photosynthesis

    12.4 Structural power composites

    12.5 Future energy storage materials

    12.6 Hybrid Alternative Energy Systems

12.6.1 Combining alternative energy components

12.6.2 Uses for hybrid energy systems

12.6.3 Solar and wind power combinations

12.6.4 Pumped-storage and wind generated hydroelectricity

12.6.5 Harvesting zero-point energy from the vacuum

12.6.6 Combined energy harvesting techniques

            Reference

            Exercises

Colin Tong is a materials expert with considerable professional experience in the past two decades. He received his PhD from Tsinghua University, and has been a researcher at the University of Michigan and at Arizona State University. Dr. Tong has published three books, over 30 peer-reviewed articles, and he holds 7 patents.

Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading

Provides comprehensive coverage of materials-based solutions for major and emerging energy systems

Brings together diverse subject matter by integrating theory with engaging insights

Covers the application of scientific and engineering principles of materials to enable a wide range of energy generation and storage systems

Explains the complex relationships among materials selection, optimizing design and component operating conditions

Envisions research and development trends of novel emerging materials for future hybrid energy systems with high efficiency and low cost

Date de parution :

Ouvrage de 911 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

137,14 €

Ajouter au panier