Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02

Url canonique :
Url courte ou permalien :

Influence and Behavior Analysis in Social Networks and Social Media, 1st ed. 2019 Lecture Notes in Social Networks Series

Langue : Anglais

Coordonnateurs : Kaya Mehmet, Alhajj Reda

Couverture de l’ouvrage Influence and Behavior Analysis in Social Networks and Social Media
This timely book focuses on influence and behavior analysis in the broader context of social network applications and social media.  Twitter accounts of telecommunications companies are analyzed.  Rumor sources in finite graphs with boundary effects by message-passing algorithms are identified.

The coherent, state-of-the-art collection of chapters was initially selected based on solid reviews from the IEEE/ACM International Conference on Advances in Social Networks, Analysis, and Mining (ASONAM '17). Chapters were then improved and extended substantially, and the final versions were rigorously reviewed and revised to meet the series standards. Original chapters coming from outside of the meeting round out the coverage. The result will appeal to researchers and students working in social network and social media analysis.
Social network to improve the educational experience with the deployment of different learning models.- Temporal Model of the Online Customer Review Helpfulness Prediction with Regression Methods.- Traits of Leaders in Movement Initiation:Classification and Identification.- Emotional Valence Shifts and User Behavior on Twitter, Facebook, and YouTube.- Diffusion Algorithms in Multimedia Social Networks: a novel model.- Analyzing Twitter Accounts of Shaw Communications.- Editing Behavior Analysis for Predicting Active and Inactive Users in Wikipedia.- Incentivized Social Sharing: Characteristics and Optimization.- Rumor Source Detection in Finite Graphs with Boundary Effects by Message-passing Algorithms.- Robustness of Influence Maximization against Non-Adversarial Perturbations.- Analyzing Social Book Reading Behavior on Goodreads and how it predicts Amazon Best Sellers.

Includes behavior analysis data for predicting active and inactive users in Wikipedia

Contains book reading behavior data on Goodreads and how it can predict 'Amazon Best Sellers'

Ties into discussions of social media misuse for targeted manipulations

Date de parution :

Ouvrage de 235 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

79,11 €

Ajouter au panier
En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.