Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/medecine/plasticity-in-the-visual-system-from-genes-to-circuits/pinaud/descriptif_1271788
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1271788

Plasticity in the Visual System, 2006 From Genes to Circuits

Langue : Anglais

Coordonnateurs : Pinaud Raphael, Tremere Liisa A., de Weerd Peter

Couverture de l’ouvrage Plasticity in the Visual System

Mechanisms of neural plasticity enable the encoding and memorization of information based on sensory inputs and can be harnessed to partially restore function after CNS assault such as stroke or head trauma. In the present book, experts from the field of visual system plasticity describe and evaluate the evidence for neural mechanisms proposed to underlie CNS plasticity in the major divisions of the brain dedicated to visual processing, the retina, sub-cortical structures and cortex. We present studies from a wide variety of disciplines that range from molecular biology to neurophysiology and computer modeling. Leading investigators discuss their own work, and integrate this research with colleagues from other specializations. The book points out future applications for this research including clinical uses and engineering within the biomedical sciences. This book is an exciting and thought provoking read for all levels of science enthusiast interested in the physical basis of learning and cognition.

Introduction: Plasticity in the Visual System: From Genes to Circuits.- Part I Retinal and Thalamic Plasticity: Synaptic Plasticity and Structural Remodeling of Rod and Cone Cells.- Retinal Remodeling: Circuitry Revisions Triggered by Photoreceptor Degeneration.- Retinal Plasticity and Interactive Cellular Remodeling in Retinal Detachment and Reattachment.- Experience-Dependent Retinal Circuit Rewiring: Involvement of Immediate Early Genes.- Attentional Activation of Cortico-Thalamic Pathways Revealed by Fos Imaging.- Part II Cortical Plasticity: Neuromodulatory Transmitters in Sensory Processing and Plasticity in the Primary Visual Cortex.- Critical Calcium-Regulated Biochemical and Gene Expression Programs in Experience-Dependent Plasticity.- The Molecular Biology of Sensory Map Plasticity in Adult Mammals. Plasticity of Retinotopic Maps in Visual Cortex of Cats and Monkeys After Lesions of the Retinas or Primary Visual Cortex.- Intra-Cortical Inhibition in the Regulation of Receptive Field Properties and Neural Plasticity in the Primary Visual Cortex.- Plasticity in V1 Induced by Perceptual Learning.- Investigating Higher Order Cognitive Functions in the Dorsal (Magnocellular) Stream of Visual Processing.- Dopamine-Dependent Associative Learning of Workload Predicting Cues in the Temporal Lobe of the Monkey.- Part III Theoretical Considerations: Linking Visual Development and Learning to Information Processing: Pre-attentive and Attentive Brain Dynamics.- Conclusion: A Unified Theoretical Framework for Plasticity in Visual Circuitry.

Discusses retinal plasticity; directly addresses the role of immediate early genes as the first genetic outlet in the cell's plastic response; and addresses dynamic plasticity in higher order visual areas and relates them to the brain mechanisms that underlie complex behaviors

Couples together findings from molecular biology, genetics, electrophysiology as well as human psychophysics

Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 364 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 158,24 €

Ajouter au panier

Date de parution :

Ouvrage de 364 p.

15.5x23.5 cm

Sous réserve de disponibilité chez l'éditeur.

Prix indicatif 158,24 €

Ajouter au panier