Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/medecine/laser-applications-in-medicine-and-biology/descriptif_1231276
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1231276

Laser Applications in Medicine and Biology, Softcover reprint of the original 1st ed. 1974 Volume 2

Langue : Anglais

Auteur :

Couverture de l’ouvrage Laser Applications in Medicine and Biology
In the intervening years since the publication of Volume I, the develop­ ment of new uses for the various types of lasers has proceeded at a rate more rapid than even the most fanciful dreamers envisioned. Of course, the main effort has been on the laser itself-new wavelengths, shorter and longer time domains for pulses, increases in power, and, most important, greater reliability. In its first stage the laser was described as a solution in search of a problem. The production of holograms was one problem whose solution seemed to involve large number of lasers. However that proposal had its own difficulties, for the hologram itself was described as a solution searching for a problem. But all of that now is a chapter from ancient history . On the current scene the laser is used in industrial pro­ duction lines, as a classroom item at all levels of education, and in com­ mercial usage such that the public is generally exposed to the laser devices themselves. Trial runs have been made, e. g. , of laser-based supermarket checkout devices and as commercial exploitation of this item begins, cer­ tainly many more similar adaptations will follow. However, the shift in emphasis from research usage of lasers to de­ velopment and production has been relative rather than absolute. The use of the laser in research has not lessened; rather it has grown at as fast a pace. Yet a similar trend is seen there also.
1 Microbeams.- 1. Introduction.- 2. Instrumentation.- 2.1. General Considerations.- 2.2. Ruby Laser Microbeams.- 2.3. Argon Laser Microbeams.- 2.4. Neodymium Laser Microbeams.- 2.5. Other Laser Microbeam-Like Systems.- 2.6. Available Laser Wavelengths.- 3. Methodologies Employed with Microbeam Irradiation.- 3.1. Cell Culture.- 3.2. Vital Dye Sensitization.- 3.3. Light Microscopy.- 3.4. Electron Microscopy.- 3.5. Biochemical Analysis.- 4. Studies on Cell Function and Structure.- 4.1. Multicellular Plants.- 4.2. Unicellular Organisms.- 4.3. Embryos and Eggs.- 4.4. Tissue Culture Cells—Ruby and Neodymium Lasers.- 4.5. Tissue Culture Cells—Argon Laser.- 4.6. Microbeam Studies on the Nervous System.- 5. Conclusion.- Acknowledgments.- References.- 2 Lasers in Ophthalmology.- 1. Introduction.- 2. Coherence.- 3. Consequences of Coherence.- 3.1. Fringe Visibility.- 3.2. Beam Collimation.- 3.3. Resolution.- 4. Lasers.- 4.1. Ideal and Real Lasers.- 4.2. Lasers Used in Ophthalmology.- 5. The Eye.- 6. The Laser Refractor.- 7. Laser Acuity Testing.- 7.1. The Acuity of the Eye.- 7.2. Modulation Transfer Function.- 7.3. Laser Visual Acuity Tester.- 8. Retinal Visual Acuity in the Case of Cataracts.- 9. The Laser Cane.- 10. Laser Treatment for Corneal Ulcers.- 11. Laser Photocoagulation.- 11.1 Ruby Laser Coagulator.- 11.2. Argon Ion Laser Coagulator.- 12. Conclusion.- References.- 3 Holography of the Eye: A Critical Review.- 1. Introduction.- 2. Applications.- 2.1. Three-Dimensional Records.- 2.2. Detection of Abnormalities.- 2.3. Measurement of Abnormalities in Three Dimensions.- 2.4. Information Storage.- 2.5. Retrospective Study of the Entire Eye.- 2.6. Contour Mapping.- 2.7. Measurement of Changes Within the Eye.- 2.8. High Resolution of Fundus.- 2.9. Measurement of Optical Constants of the Eye.- 3. Possible Methods of Hologram Formation.- 3.1. Fresnel Hologram.- 3.2. Fraunhofer Hologram.- 3.3. Fourier Transform Hologram.- 3.4. Lensless Fourier Transform Hologram.- 4. Methods of Achieving Magnification.- 4.1. Magnification Due Solely to the Holographic Process.- 4.2. Holography of a Premagnified Object.- 4.3. Magnification Subsequent to the Holographic Process.- 5. Special Holographic Techniques.- 5.1. Holographic Interferometry.- 5.2. Holographic Contour Generation.- 6. Choice of Parameters.- 6.1. Wavelength.- 6.2. Retinal Energy Density.- 6.3. Exposure Duration.- 6.4. Recording Materials.- 7. Speckle.- 8. Holograms of the Eye.- 9. Proposed Applications of Ocular Holography.- 9.1. Holographic Interferometry.- 9.2. High Resolution Image of the Optic Fundus.- 9.3. Measurement of Optical Constants of the Eye.- 10. Summary.- Acknowledgments.- Appendix—Information Content of Eye Holograms.- References.- 4 Quantitative Laser Microprobe Analysis.- 1. Introduction.- 2. Instrumentation.- 2.1. Laser Head.- 2.2. Microscope Head.- 2.3. Emission Spectrography.- 2.4. Mass Spectrometry.- 2.5. Atomic Absorption.- 3. Standardization.- 4. Sample Preparation.- 5. Applications.- 5.1. Forensic and Toxicological Applications.- 5.2. Applications to Tissues.- 5.3. Applications to Teeth, Bones, and Skin.- 5.4. Applications to Body Fluids.- 5.5. Applications to Plants.- 5.6. Applications to Nonmammalian Biology.- 6. Sensitivity.- 7. Laser Microprobe vs. Other Probes.- 8. Conclusions.- References.- 5 Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells.- 1. Introduction.- 2. Flow Microphotometry.- 2.1. General Considerations.- 2.2. Laminar Flow Chamber.- 2.3. Input Beam Optics.- 2.4. Light Collection Systems.- 2.5. Electronic Signal Processing.- 3. Flow Microfluorometry (FMF).- 3.1. FMF II.- 3.2. Beam Optics.- 3.3. Signal Processing.- 3.4. Results.- 3.5. Resolution.- 4. Biological Applications of FMF II.- 4.1. Life Cycle Analysis and Relative DNA Quantitation.- 4.2. Chemotherapeutic Agent Effects.- 4.3. Cell-Surface Architecture Studies.- 4.4. Fluorescein-Labeled Antigen—Antibody Measurements.- 5. Preparation of Cell Samples for FMF Analysis.- 5.1. Cell Dispersal and Fixation.- 5.2. DNA Staining Procedures.- 5.3. Protein Staining.- 6. Multiparameter Cell Analysis and Sorting.- 6.1. Description of the Multiparameter Cell Sorter (MPS-1).- 6.2. Electronic Cell Sensing.- 6.3. Fluorescence Detection.- 6.4. Light Scattering.- 6.5. Multiparameter Signal Processing.- 6.6. Multiparameter Analysis and Sorting Applications.- 6.7. Tumor Cell Identification and Separation.- 6.8. White Blood Cell Differential.- 7. Light Scattering.- 7.1. Models for Mammalian Cells.- 7.2. Exact Electromagnetic Theory Considerations.- 7.3. Experimental Verification for Live Mammalian Cells in Suspension.- 7.4. Flow Microphotometric Measurements.- 8. Future Applications.- 8.1. Instrumentation.- 8.2. Biological Applications.- Acknowledgments.- References.- 6 Biological Damage Resulting from Thermal Pulses.- 1. Introduction.- 2. Calculation of the Temperature Distribution.- 3. Chemical Rate Equations.- 4. Biological Results at Elevated Temperatures.- Acknowledgments.- References.- 7 Laser Protective Eyewear.- 1. Introduction.- 2. Applications.- 3. Laser Viewing Enhancement Goggles.- 4. Parameters of Laser Eye Protection.- 4.1. Wavelength.- 4.2. Optical Density.- 4.3. Laser Beam Irradiance or Radiant Exposure.- 4.4. Visual Transmittance of Eyewear.- 4.5. Laser Filter Damage Threshold (Maximum Irradiance).- 4.6. Filter Curvature.- 5. Methods of Construction.- 6. Selecting Appropriate Eyewear.- 7. Commercial Sources of Laser Eye Protection.- 8. Testing Laser Eye Protection.- 9. Marking of Eye Protection.- 10. Eye Protection for Infrared Lasers.- 11. Eye Protection for Pump Lamps and Tunable Wavelength Lasers.- 12. Polarizing Filters.- 13. Dynamic Eye Protection Devices.- 14. Future Developments.- References.- 8 Lasers in Surgery.- 1. Introduction.- 1.1. Scope of Review.- 1.2. Characteristics of Lasers.- 1.3. Interaction of Radiation with Tissue.- 2. Critical Review and History of Laser Surgery.- 2.1. Pulsed Ruby and Neodymium Laser Surgery.- 2.2. Carbon Dioxide Laser Surgery.- 3. Carbon Dioxide Laser Surgery.- 3.1. Instrumentation.- 3.2. Surgical Applications—Clinical and Experimental.- 4. Surgical Applications of Other Lasers.- 4.1. Ruby Laser.- 4.2. Argon Ion Laser.- 4.3. Neodymium in Yttrium, Aluminum, Garnet (Nd YAG).- 5. The Future of Lasers in Surgery.- 6. Summary and Conclusions.- Acknowledgments.- References.- 9 The Carbon Dioxide Laser in Clinical Surgery.- 1. Introduction.- 1.1. Skin Healing.- 1.2. Skin Grafts.- 1.3. Hemostatic Effect.- 1.4. Postoperative Pain.- 2. Observations on the Applicability of the Carbon Dioxide Laser in Specific Clinical Conditions.- 2.1. Burns.- 2.2. Mastopathy.- 2.3. Hemangioma.- 2.4. Cervical Erosions.- 2.5. Hemorrhoids.- 2.6. Malignant Tumors.- 2.7. Rectal Carcinoma.- 3. Design and Development of a New Carbon Dioxide Surgical Laser.- 3.1. The Laser and Optical Bench.- 3.2. The Articulated Arm and Balancing System.- 3.3. The Manipulator.- 3.4. Safety Measures.- 3.5. Mobility and Compactness of the System.- 3.6. Remote Control.- 3.7. Attachments for Specific Surgical Procedures.- 4. Conclusions.- References.- 10 The Formulation of Protection Standards for Lasers.- 1. Introduction.- 1.1. Application of the Protection Standards.- 1.2. The Need for Regulations.- 2. Analysis of Safety Regulations in Massachusetts.- 2.1. Philosophy of Laser Regulation and Registration.- 2.2. Definitions.- 2.3. Exemptions and Exceptions.- 2.4. Data Collection.- 2.5. Protection Standards.- 2.6. Measurements for Conformance and Survey.- 2.7. Regulation.- 2.8. Specific Precautions for Outdoor Installations.- 2.9. Personnel Protection.- 2.10. Medical Surveillance.- 2.11. Appendix to Massachusetts Board of Health Rules and Regulations.- 3. The Outlook for Federal Regulations.- 4. State Regulations in the United States.- 5. Protection Standards for Retinal Hazards: Considerations of Biological Data.- 5.1. Useful Presentation of Biological Data.- 5.2. Sources of Error in the Biological Data.- 5.3. Laser Accident Data.- 5.4. Combining Data Points.- 5.5. Standards for Different Wavelengths.- 6. The Selection of Proper Format and Levels—Neither Too Detailed Nor Too Conservative.- 6.1. The Degree of Safety.- 6.2. Military Protection Standards.- 6.3. Specification of Protection Standards.- 6.4. Retinal Exposure Levels and Corneal Exposure Levels.- 6.5. Specification of Pupil Size.- 7. Extrapolation.- 7.1. Interpreting the Biological Data.- 7.2. From Cornea to Retina and Back Again.- 7.3. Relation Between Different Retinal Image Sizes and Associated Retinal Injury Thresholds.- 7.4. Thermal Models.- 7.5. Retinal Detachment.- 7.6. Melanin Granules in Pigment Epithelium as Local Hot Spots.- 7.7. Other Factors Influencing Laser Injury Spot Size: Biological and Physical Amplification.- 7.8. Infrared and Ultraviolet Laser Protection Standards.- 8. The ANSI-Z-136 Standards.- 8.1. Formulation of Protection Standard Exposure Levels.- 8.2. Limiting Apertures.- 8.3. Extended Sources.- 8.4. Correction Factor A (CA).- 8.5. Repetitively Pulsed Lasers.- 8.6. Laser Hazard Classification.- 9. Other Standards.- 10. Present Problems and Future Plans.- References.- 11 Dentistry and the Laser.- 1. Introduction.- 1.1. Anatomy of Dental Structures.- 1.2. Dental Diseases.- 2. Early Laser Investigations.- 3. Investigations Leading to Laser-Induced Caries Inhibition.- 3.1. Ruby Laser.- 3.2. Pulsed Carbon Dioxide Laser.- 4. Laser Effects on Dental Soft Tissue.- 5. Potential Applications.- 6. Summary.- Acknowledgments.- References.- Author Index.

Date de parution :

Ouvrage de 404 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 52,74 €

Ajouter au panier