Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/medecine/biomechanics-of-the-human-stomach/descriptif_3967253
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3967253

Biomechanics of the Human Stomach, 1st ed. 2017

Langue : Anglais

Auteur :

Couverture de l’ouvrage Biomechanics of the Human Stomach

This book concerns the mathematical modeling and computer simulation of the human stomach. It follows the four modern P?s (prevention, prediction, personalization, and precision in medicine) approach in addressing the highly heterogeneous nature of processes underlying gastric motility disorders manifested as gastroparesis, functional dyspepsia, myenteric enteropathy etc.  The book comprehensively guides readers through the fundamental theoretical concepts to complex physiological models of the organ.  This requires a deep and thorough understanding of driving pathophysiological mechanisms as well as the collaborative effort of specialists working in fundamental and biological science. Such a multidisciplinary partnership is vital because it upholds gnostic capabilities and provides the exchange of thoughts and ideas thus offering broad perspectives into the evolution and management of diseases. The book is a valuable resource for applied mathematicians, computational biologists, bioengineers, physicians, physiologists and researchers working in various fields of biomedicine.

Preface

 

Notations

 

Abbreviations

 

Introduction

 

Chapter 1. Biological Preliminaries

 

1.1  Anatomy and physiological background

1.2  Smooth muscle syncytia

1.3  Regulatory system

1.4  Electrophysiology of the stomach

1.5  Neuroendocrine modulators

1.6  Coupling phenomenon

1.7  Biomechanics of the human stomach

 

Chapter 2. Biomechanics of the Human Stomach

2.1        Constitutive relations for the tissue

2.2  Models of the human stomach

2.3  Models of myoelectrical activity

 

Chapter 3. Geometry of the Surface

 

3.1      Intrinsic geometry

3.2      Extrinsic geometry

3.3      Equations of Gauss and Codazzi

3.4      General curvilinear coordinates

3.5      Deformation of the surface

      3.6     Equations of compatibility

           

Chapter 4. Parameterization of Shells of Complex Geometry

 

4.1        Fictitious deformations

4.2        Parameterization of the equidistant surface

4.3        A single function variant of the method of fictitious deformation

4.4        Parameterization of a complex surface in preferred coordinates

4.5       Parameterization of complex surfaces on plane

     

 

Chapter 5. Nonlinear Theory of Thin Shells

 

5.1             Deformation of the shell

5.2             Forces and moments

5.3             Equations of equilibrium

 

Chapter 6. Continuum Model of the Biological Tissue

 

6.1         Biocomposite as a mechanochemical continuum

6.2         Biological factor

6.3         Mechanical properties of the human stomach

6.3.1             Uniaxial loading

6.3.2             Biaxial loading

6.3.3             Histomorphological changes in the tissue under loading

6.3.4             Active forces

     

Chapter 7. Boundary Conditions

 

7.1           Geometry of the boundary

7.2           Stresses on the boundary

7.3           Static boundary conditions

7.4           Deformations of the edge

7.5           Equations of Gauss-Codazzi for the boundary

     

Chapter 8. Soft Shells

 

8.1            Deformations of soft shell

8.2            Principal deformations

8.3            Membrane forces

8.4            Principal membrane forces

8.5            Corollaries of the fundamental assumptions

8.6            Nets

8.7            Equations of motion in general curvilinear coordinates

8.8            Governing equations in orthogonal Cartesian coordinates

8.9            Governing equations in cylindrical coordinates

 

Chapter 9. The Intrinsic Regulatory Pathways                                           

 

9.1            Biological preliminaries

9.2            Topographical neuronal assemblies in the human stomach

9.3            A model of a neuron

9.4            Inhibitory neural circuit

9.5            Planar neuronal network

 

Chapter 10. The synapse

 

10.1System compartmentalization

10.2cAMP-dependent pathway

10.3PLC pathway

10.4Variations in synaptic neurotransmission

 

Chapter 11. Multiple co-transmission and receptor polymodality

 

11.1Co-localization and co-transmission by multiple neurotransmitters

11.2Co-transmission by VIP and nitric oxide

11.3Co-transmission by acetylcholine, VIP and nitric oxide

11.4Co-transmission by SP, acetylcholine, VIP and nitric oxide

11.5Co-transmission by serotonin, VIP and nitric oxide

11.6Co-transmission by NPY, acetylcholine and nitric oxide

 

Chapter 12. A Model of Gastric Smooth Muscle    

12.1

12.2Response of SIP/ganglion to stimulation

12.3The vagal external input

12.4Self-oscillatory dynamics of SIP

12.5Gastric arrhythmia

12.6Effects of co-transmission on the SIP/ganglion unit

 

                  Chapter 13.  Human Stomach as a Soft Biological Shell                

 

13.2     Basic assumptions

13.3     The stomach as a soft biological shell

13.4     Stress-strain analysis in anatomically variable stomach

13.5     Electromechanical wave phenomenon

13.6     Motility patterns in the physiological stomach

13.7     A model of gastroparesis

13.8     A model of myenteric neuropathy

13.9     A model of gastric arrythmia

                             

Chapter 14. Pharmacology of Gastric Contractility            

 

14.1Classes of drugs

14.2Current therapies of gastric dysfunction

14.3Model of competitive antagonist action

14.4Model of allosteric interaction

14.5Allosteric modulation of competitive agonist/antagonist action

14.6Model of PDE-4 inhibitor

14.7Effects of existing and prospective drugs on gastric motility

 

                  Chapter 15.  Biomechanics of the Human Stomach after Surgery  

 

15.1           Sleeve gastectomy

15.2           Billroth I and II

15.3           Truncal, partial and selective vagotomy

 

Chapter 16.  Biomechanics of the Human Stomach in Perspective

 

16.1Reliability of  models

16.2The Brain-stomach interaction

16.3Applications, pitfalls and future problems

 

Addendum

 

Chapter 17.     Existence of solutions                                                                      

 

Chapter 18.     Dynamics of waves in solid deformable structures                         

 

References

 

Index

Professor Dr. Roustem Miftahof, MD, PhD, DSc is the Chair of Computational Biology and Medicine Centre in the College of Medicine and Medical Sciences at Arabian Gulf University in Manama, Bahrain. He earned the Doctor of Medicine degree with Honors in 1980 and the degree in Applied Mathematics with Honors in 1981. His PhD in Mathematical and Physical Sciences was related to Numerical simulation of stress-strain distribution in the human stomach and his DSc in Technical Sciences (post-habilitation dissertation) was on Peristaltic waves in biological shells

Explains the theory of soft thin biological shells and its application

Offers an interdisciplinary look on the pathophysiology, pathogenesis and management of gastric motility disorders

Illustrates the effects of existing and newly synthesized drugs to treat gastric motility disorders

Date de parution :

Ouvrage de 279 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

158,24 €

Ajouter au panier

Date de parution :

Ouvrage de 279 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

158,24 €

Ajouter au panier