Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/medecine/advanced-optical-methods-for-brain-imaging/descriptif_3814582
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3814582

Advanced Optical Methods for Brain Imaging, Softcover reprint of the original 1st ed. 2019 Progress in Optical Science and Photonics Series, Vol. 5

Langue : Anglais

Coordonnateurs : Kao Fu-Jen, Keiser Gerd, Gogoi Ankur

Couverture de l’ouvrage Advanced Optical Methods for Brain Imaging

This book highlights the rapidly developing field of advanced optical methods for structural and functional brain imaging. As is known, the brain is the most poorly understood organ of a living body. It is indeed the most complex structure in the known universe and, thus, mapping of the brain has become one of the most exciting frontlines of contemporary research. Starting from the fundamentals of the brain, neurons and synapses, this book presents a streamlined and focused coverage of the core principles, theoretical and experimental approaches, and state-of-the-art applications of most of the currently used imaging methods in brain research. It presents contributions from international leaders on different photonics-based brain imaging modalities and techniques. Included are comprehensive descriptions of many of the technology driven spectacular advances made over the past few years that have allowed novel insights of the structural and functional details of neurons.

The bookis targeted at researchers, engineers and scientists who are working in the field of brain imaging, neuroscience and connectomics. Although this book is not intended to serve as a textbook, it will appeal to undergraduate students engaged in the specialization of brain imaging.
Introduction.- Optical Coherence Tomography for Brain Imaging.- Light-sheet microscopy for whole brain imaging.- The Airyscan detector from ZEISS: Confocal Microscopy Evolution for the Neurosciences.- Recording Ca++ Transients in Neurons by TCSPC FLIM.- In vivo imaging of all cortical layers and hippocampal CA1 pyramidal cells by two-photon excitation microscopy.- Patterned two-photon illumination for high-speed functional imaging of brain networks in vivo.- Holographic functional calcium imaging of neuronal circuit activity.- Advanced miniature microscopy for Brain Imaging.- Stimulated Raman scattering microscopy for brain imaging: basic principle, measurements and applications.- Super resolving approaches suitable for brain imaging applications.- Super resolution STED and STORM/PALM microscopy for brain imaging.- Expansion microscopy for brain imaging.- Adaptive Optics in Multiphoton Microscopy.- Chemical processing of brain tissues for large-volume, high-resolution optical imaging.
Fu-Jen Kao is a Professor at Institute of Biophotonics, National Yang-Ming University, Taiwan. At present, he is the Vice President of the Association of Asia Pacific Physical Societies. He was also the former Director, Institute of Biophotonics, National Yang-Ming University and former President of the Physics Society of ROC, Taiwan. In addition, he has served as the Chief of Research and Planning, Office of Research Affair, Professor of Institute of Electro-Optical Engineering and Professor of the Department of Physics at National Sun Yat-sen University. He is a fellow of Royal Microscopy Society and SPIE, associate editor of IEEE TBME and reviewer of a number of international research journals. The research laboratory led by him has successfully developed many advanced techniques based on multiphoton microscopy with a wide variety of imaging modalities, including two-photon, OBIC, SHG, THG, CARS, stimulated emission, FLIM/FRET, etc. In addition to championing these developments, hehas transferred many of the above techniques to a large number of interested research groups both domestically and internationally. He has authored over 90 SCI Journal Papers, edited two books, and presented his research at over 100 international conferences. He received his Bachelor of Science (BA) in Physics from the National Taiwan University (June, 1983), Master of Science (MA) in Physics from Cornell University (August, 1988) and Doctor of Philosophy (PhD) in Physics from Cornell University (August, 1993).

Gerd Keiser is Research Professor at Boston University and Professor and consultant at PhotonicsComm Solutions, a firm specializing in education and consulting for the optical communications and biophotonics industries. Previously he was involved with telecom technologies at Honeywell, GTE, and General Dynamics. His technical achievements at GTE earned him the prestigious Leslie Warner Award. In addition, he has served as Adjunct Professor of Electrical Engineering at Nor
Compiles topics starting from the basics of neuroscience to the most recent advances in structural and functional brain imaging technologies Presents focused and comprehensive description of the physical principles, instrumentation, and the most recent brain imaging applications using optical methods Addresses the development of novel techniques like adaptive optics, click chemistry reactions, artificial neural networks, and the CLARITY method in the field of brain imaging

Date de parution :

Ouvrage de 334 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 334 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier