Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/mathematiques/non-linear-differential-equations-and-dynamical-systems/descriptif_4162651
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4162651

Non-Linear Differential Equations and Dynamical Systems Mathematics and Physics for Science and Technology Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Non-Linear Differential Equations and Dynamical Systems

 

Non-linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set).

The first chapter considers non-linear differential equations of first order, including variable

coefficients. A first-order differential equation is equivalent to a first-order differential in two variables.

The differentials of order higher than the first and with more than two variables are also considered.

The applications include the representation of vector fields by potentials.

The second chapter in the book starts with linear oscillators with coefficients varying with time,

including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance,

amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to

electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead

to chaotic motions.

  • Presents general first-order differential equations including non-linear like the Ricatti equation
  • Discusses differentials of the first or higher order in two or more variables
  • Includes discretization of differential equations as finite difference equations
  • Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods
  • Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions
1. Differentials and First-order Differential Equations. 2. Unsteady, Non-linear and Chaotic
Systems.

Date de parution :

15.6x23.5 cm

À paraître, réservez-le dès maintenant

94,64 €

Ajouter au panier
En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.
FERMER