Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/mathematiques/methodes-numeriques-et-optimisation/corriou/descriptif-9782743013172
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2492808

Méthodes numériques et optimisation Théorie et pratique pour l'ingénieur

Langue : Français

Auteur :

Couverture de l’ouvrage Méthodes numériques et optimisation
Méthodes numériques et Optimisation présente l’essentiel des méthodes numériques et de l’optimisation sous l’angle théorique et pratique. Pour la première fois, ces deux domaines sont rassemblés dans un même ouvrage : l’ingénieur doit en effet souvent résoudre des problèmes d’optimisation qui font intervenir des aspects numériques.
Sont ainsi exposées et explicitées les différentes méthodes et techniques à la disposition de l’utilisateur : interpolation et approximation ; intégration numérique ; résolution d’équations par les méthodes itératives ; opérations numériques sur les matrices ; résolution des systèmes d’équations algébriques ; intégration numérique des équations différentielles ordinaires ; intégration numérique des équations aux dérivées partielles ; méthodes analytiques d’optimisation ; méthodes numériques d’optimisation ; programmation linéaire ; optimisation quadratique et non linéaire.
Accompagné de nombreux exemples et d’exercices, cet ouvrage est destiné aux enseignants, chercheurs, ingénieurs, ainsi qu’aux étudiants en université et écoles d’ingénieurs, qui y trouveront des explications détaillées, des algorithmes et des applications couvrant la très grande majorité des problèmes physiques devant être résolus numériquement.
1. Interpolation et approximation. 2. Intégration numérique. 3. Résolution d’équations par des méthodes itératives. 4. Opérations numériques sur les matrices. 5. Résolution des systèmes d’équations algébriques. 6. Intégration numérique des équations différentielles ordinaires. 7. Intégration numérique des équations aux dérivées partielles. 8. Méthodes analytiques d’optimisation. 9. Méthodes numériques d’optimisation. 10. Programmation linéaire. 11. Optimisation quadratique et non linéaire. 12. Exercices.
Jean-Pierre Corriou, est professeur à l'École Nationale Supérieure des Industries Chimiques de Nancy et effectue ses recherches en simulation et commande des procédés au sein du Laboratoire de Réactions et Génie des Procédés.

Date de parution :

Ouvrage de 444 p.

15.5x24 cm

En stock : expédition en 24h !

100,00 €

Ajouter au panier

Thèmes de Méthodes numériques et optimisation  :

En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.
FERMER