Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/mathematiques/linear-algebra-and-its-applications-global-edition/descriptif_3707171
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3707171

Linear Algebra and Its Applications, Global Edition (5th Ed.)

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Linear Algebra and Its Applications, Global Edition

For courses in linear algebra.

 

With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand.

 

MyMathLab is an online homework, tutorial, and assessment product designed to personalize learning and improve results. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.

 

Please note that the product you are purchasing does not include MyMathLab.

 

MyMathLab

 

Join over 11 million students benefiting from Pearson MyLabs.

This title can be supported by MyMathLab, an online homework and tutorial system designed to test and build your understanding. Would you like to use the power of MyMathLab to accelerate your learning?  You need both an access card and a course ID to access MyMathLab.

 

These are the steps you need to take:

1.  Make sure that your lecturer is already using the system

Ask your lecturer before purchasing a MyLab product as you will need a course ID from them before you can gain access to the system.

2.  Check whether an access card has been included with the book at a reduced cost

If it has, it will be on the inside back cover of the book.

3. If you have a course ID but no access code, you can benefit from MyMathLab at a reduced price by purchasing a pack containing a copy of the book and an access code for MyMathLab (ISBN:9781292092348)

4.  If your lecturer is using the MyLab and you would like to purchase the product...

Go to  www.mymathlab.com to buy access to this interactive study programme.

 

For educator access, contact your Pearson representative. To find out who your Pearson representative is, visit www.pearsoned.co.uk/replocator

 


1. Linear Equations in Linear Algebra

Introductory Example: Linear Models in Economics and Engineering

1.1 Systems of Linear Equations

1.2 Row Reduction and Echelon Forms

1.3 Vector Equations

1.4 The Matrix Equation Ax = b

1.5 Solution Sets of Linear Systems

1.6 Applications of Linear Systems

1.7 Linear Independence

1.8 Introduction to Linear Transformations

1.9 The Matrix of a Linear Transformation

1.10 Linear Models in Business, Science, and Engineering

Supplementary Exercises

 

2. Matrix Algebra

Introductory Example: Computer Models in Aircraft Design

2.1 Matrix Operations

2.2 The Inverse of a Matrix

2.3 Characterizations of Invertible Matrices

2.4 Partitioned Matrices

2.5 Matrix Factorizations

2.6 The Leontief Input–Output Model

2.7 Applications to Computer Graphics

2.8 Subspaces of Rn

2.9 Dimension and Rank

Supplementary Exercises

 

3. Determinants

Introductory Example: Random Paths and Distortion

3.1 Introduction to Determinants

3.2 Properties of Determinants

3.3 Cramer’s Rule, Volume, and Linear Transformations

Supplementary Exercises

 

4. Vector Spaces

Introductory Example: Space Flight and Control Systems

4.1 Vector Spaces and Subspaces

4.2 Null Spaces, Column Spaces, and Linear Transformations

4.3 Linearly Independent Sets; Bases

4.4 Coordinate Systems

4.5 The Dimension of a Vector Space

4.6 Rank

4.7 Change of Basis

4.8 Applications to Difference Equations

4.9 Applications to Markov Chains

Supplementary Exercises

 

5. Eigenvalues and Eigenvectors

Introductory Example: Dynamical Systems and Spotted Owls

5.1 Eigenvectors and Eigenvalues

5.2 The Characteristic Equation

5.3 Diagonalization

5.4 Eigenvectors and Linear Transformations

5.5 Complex Eigenvalues

5.6 Discrete Dynamical Systems

5.7 Applications to Differential Equations

5.8 Iterative Estimates for Eigenvalues

Supplementary Exercises

 

6. Orthogonality and Least Squares

Introductory Example: The North American Datum and GPS Navigation

6.1 Inner Product, Length, and Orthogonality

6.2 Orthogonal Sets

6.3 Orthogonal Projections

6.4 The Gram–Schmidt Process

6.5 Least-Squares Problems

6.6 Applications to Linear Models

6.7 Inner Product Spaces

6.8 Applications of Inner Product Spaces

Supplementary Exercises

 

7. Symmetric Matrices and Quadratic Forms

Introductory Example: Multichannel Image Processing

7.1 Diagonalization of Symmetric Matrices

7.2 Quadratic Forms

7.3 Constrained Optimization

7.4 The Singular Value Decomposition

7.5 Applications to Image Processing and Statistics

Supplementary Exercises

 

8. The Geometry of Vector Spaces

Introductory Example: The Platonic Solids

8.1 Affine Combinations

8.2 Affine Independence

8.3 Convex Combinations

8.4 Hyperplanes

8.5 Polytopes

8.6 Curves and Surfaces

 

9. Optimization (Online Only)

Introductory Example: The Berlin Airlift

9.1 Matrix Games

9.2 Linear Programming—Geometric Method

9.3 Linear Programming—Simplex Method

9.4 Duality

 

10. Finite-State Markov Chains (Online Only)

Introductory Example: Googling Markov Chains

10.1 Introduction and Examples

10.2 The Steady-State Vector and Google's PageRank

10.3 Finite-State Markov Chains

10.4 Classification of States and Periodicity

10.5 The Fundamental Matrix

10.6 Markov Chains and Baseball Statistics

 

Appendices

A. Uniqueness of the Reduced Echelon Form

B. Complex Numbers

 

This title is a Pearson Global Edition. The Editorial team at Pearson has worked closely with educators around the world to include content which is especially relevant to students outside the United States.

 

About the Textbook

  • Early introduction of key concepts: Fundamental ideas of linear algebra are introduced within the first seven lectures, in the concrete setting of Rn, then gradually examined from different points of view. Later, generalizations of these concepts appear as natural extensions of familiar ideas.
  • Linear transformations form a “thread” that is woven into the fabric of the text. Their use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transformations provide a dynamic and graphical view of matrix-vector multiplication.
  • Orthogonality and Least-Squares Problems receive more comprehensive treatments than is commonly found in beginning texts because orthogonality plays such an important role in computer calculations and numerical linear algebra and because inconsistent linear systems arise so often in practical work.
  • Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material is spread over several weeks, students have more time to absorb and to review these critical concepts. Eigenvalues are motivated by and applied to discrete and continuous dynamical systems, which appear in Sections 1.10, 4.8, and 4.9, and in five sections of Chapter 5.
  • A modern view of matrix multiplication is presented, with definitions and proofs focusing on the columns of a matrix rather than on the matrix entries.
  • Focus on visualization of concepts throughout the book helps students grasp the concepts.Each major concept in the course is given a geometric interpretation because many students learn better when they can visualize an idea.
  • Numerical Notes

Date de parution :

Ouvrage de 576 p.

20.1x25.1 cm

Disponible chez l'éditeur (délai d'approvisionnement : 12 jours).

Prix indicatif 85,79 €

Ajouter au panier

Thème de Linear Algebra and Its Applications, Global Edition  :

Ces ouvrages sont susceptibles de vous intéresser