Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/materiaux/materials-kinetics/descriptif_4427687
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4427687

Materials Kinetics Transport and Rate Phenomena

Langue : Anglais

Auteur :

Couverture de l’ouvrage Materials Kinetics

Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick?s laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials.

Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations.

1. Thermodynamics vs. Kinetics 2. Irreversible Thermodynamics  3. Fick’s Laws of Diffusion 4. Analytical Solutions of the Diffusion Equation  5. Multicomponent Diffusion  6. Numerical Solutions of the Diffusion Equation 7. Atomic Models for Diffusion 8. Diffusion in Crystals 9. Diffusion in Polycrystalline Materials 10. Motion of Dislocations and Interfaces 11. Morphological Evolution in Polycrystalline Materials 12. Diffusion in Polymers and Glasses 13. Kinetics of Phase Separation 14. Nucleation and Crystallization 15. Advanced Nucleation Theories 16. Viscosity of Liquids 17. Nonequilibrium Viscosity and the Glass Transition 18. Energy Landscapes 19. Broken Ergodicity 20. Master Equations 21. Relaxation of Glasses and Polymers 22. Molecular Dynamics 23. Monte Carlo Techniques 24. Fluctuations in Condensed Matter 25. Chemical Reaction Kinetics 26. Thermal and Electrical Conductivities

Postdoctoral researchers; graduate students; upper-level undergraduate students; professionals working in industries related to diffusion, conductivity, viscosity including all materials companies that have R&D branches; students and academics in chemistry and physics

Dr. John C. Mauro is Professor and Associate Head for Graduate Education in the Department of Materials Science and Engineering at The Pennsylvania State University. John earned a BS in Glass Engineering Science (2001), BA in Computer Science (2001), and PhD in Glass Science (2006), all from Alfred University. He joined Corning Incorporated in 1999 and served in multiple roles there, including Senior Research Manager of the Glass Research department. John holds more than 50 granted US patents and is the inventor or co-inventor of several new glasses for Corning, including Corning Gorilla® Glass products. John joined the faculty at Penn State in 2017 and is currently a world-recognized leader in fundamental and applied glass science, materials kinetics, computational and condensed matter physics, thermodynamics, statistical mechanics, and the topology of disordered networks. He is the author of over 280 peer-reviewed publications, Editor of the Journal of the American Ceramic Society, winner of numerous international awards, and a Fellow of the American Ceramic Society and the Society of Glass Technology. John is also co-author of Fundamentals of Inorganic Glasses, 3rd ed., Elsevier (2019).
  • Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches
  • Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials
  • Provides a seamless connection between thermodynamics and kinetics
  • Includes practical exercises that reinforce key concepts at the end of each chapter

Date de parution :

Ouvrage de 542 p.

15.2x22.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

Prix indicatif 146,54 €

Ajouter au panier

Ces ouvrages sont susceptibles de vous intéresser