Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/materiaux/ceramics-science-et-technology-volume-1-structures/riedel/descriptif_2285716
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2285716

Ceramics science & technology. Volume 1 : Structures Structures Ceramics Science and Technology (VCH) Series

Langue : Anglais

Coordonnateurs : Riedel Ralf, Chen I-Wei

Couverture de l’ouvrage Ceramics science & technology. Volume 1 : Structures
A treasure troue for a avide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions. Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modem ceramics tome in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid clown by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. These are the first two volumes of a four volume set.
Preface.

Dedication.

List of Contributors.

I Introduction.

1 Modern Trends in Advanced Ceramics (Ralf Riedel, Emanuel Ionescu, and I. Wei Chen).

1.1 Advanced Ceramics.

1.2 Conventional Synthesis and Processing of Advanced Ceramics.

1.3 Molecular Routes for the Synthesis and Processing of Advanced Ceramics.

1.4 Methods for Characterization of Advanced Ceramic Materials.

1.5 Applications of Advanced Ceramics.

1.6 Outlook.

II Structure of Ceramic Materials: Atomic Level.

2 Modeling Amorphous Ceramic Structures (Peter Kroll).

2.1 Introduction.

2.2 Computational Approach.

2.3 Results.

2.4 Summary and Conclusions.

3 Structural Chemistry of Ceramics (Rainer Pöttgen, Hubert Huppertz, and Rolf Dieter Hoffmann).

3.1 Introduction.

3.2 Crystal Chemistry of Binary Oxides.

3.3 Complex Oxide Structures.

3.4 Nitrides and Related Materials.

4 Diffusion in Ceramics (Günter Borchardt, Karsten Gömann, Martin Kilo, and Harald Schmidt).

4.1 General Introduction.

4.2 Simple Oxides.

4.3 Diffusion in Complex Oxides.

4.4 Diffusion in Non Oxide Ceramics.

5 Structures of Ceramic Materials: Thermodynamics and Constitution (Matsvei Zinkevich and Fritz Aldinger)

5.1 Introduction.

5.2 Experimental Phase Studies.

5.3 Methods of Computational Thermodynamics.

5.4 Case Studies.

III Structures of Ceramic Materials: Microstructural Level.

6 Microstructural Design of Ceramics: Theory and Experiment (Gayle S. Painter and Paul F. Becher).

6.1 Overview.

6.2 An Introduction to Ceramics.

6.3 Determinants of Ceramic Microstructure.

6.4 Factors in Microstructural Design.

6.5 Amorphous Phases in Ceramics.

6.6 Silicon Nitride Ceramics: A Model System.

6.7 Theory and Modeling of Ceramics.

6.8 A Case Study in Theory and Modeling: Intergranular Films in Silicon Nitride

6.9 Outlook.

7 Mesoscopic Ceramic Structures in One, Two, and Three Dimensions (Jörg J. Schneider and Jörg Engstler).

7.1 Ceramics at the Mesoscale.

7.2 Synthetic Routes to Mesoscaled Ceramic Structures.

7.3 One Dimensional (1 D) Ceramic Structures.

7.4 Two Dimensional (2 D) Ceramic Structures.

7.5 Three Dimensional (3 D) Ceramic Structures.

8 Bulk Ceramic Nanostructures (Pavol S4ajgalík, Ján Dusza, Zoltán Lenc4és4, Miroslav Hnatko, Dusan Galusek, and Katarina Ghillányová).

8.1 Introduction.

8.2 Materials and Related Nanocomposites.

8.3 Formation of Nanoinclusions.

8.4 Materials Preparation.

8.5 Properties of Ceramic Nanocomposites.

8.6 High Temperature Properties.

8.7 Electrical Properties.

9 Glass Ceramics: Silica and Alumina Based (Christian Rüssel).

9.1 Introduction.

9.2 Theory of Nucleation and Crystal Growth.

9.3 Glass Ceramics with Low Thermal Expansion Coefficients.

9.4 Glass Ceramics for Mechanical Applications.

9.5 Bioglass Ceramics.

9.6 Oriented Glass Ceramics.

9.7 Nano Glass Ceramics.

10 Cellular Structures (Paolo Colombo and Enrico Bernardo).

10.1 Introduction.

10.2 Structure.

10.3 Properties.

10.4 Fabrication Methods.

10.5...

Ralf Riedel has been a professor at the Institute of Materials Science of Darmstadt University of Technology since 1993. He received his degree in chemistry in 1984, followed by two years of dissertation work with Professor Ekkehard Fluck at the University of Stuttgart. After postdoctoral research at the Max-Planck Institute for Metals Research and the Institute of Inorganic Chemistry at the University of Stuttgart, he gained his lecturing qualification in the field of inorganic chemistry in 1992. He is a member of the World Academy of Ceramics and Guest Professor at the Jiangsu University in Zhenjiang, China, a Fellow of the American Ceramic Society and a recipient of the Dionyz Stur Gold Medal for merits in natural sciences. In 2006 he received an honorary doctorate from the Slovak Academy of Sciences, Bratislava, Slovakia. Professor Riedel has published more than 300 papers and patents and is widely known for his research in the field of polymer derived ceramics and on ultra high pressure synthesis of new materials.

I-Wei Chen is currently Skirkanich Professor of Materials Innovation at the University of Pennsylvania since 1997, where he also gained his master's degree in 1975. He received his bachelor's degree in physics from Tsinghua University, Taiwan, in 1972, and earned his doctorate in metallurgy from the Massachusetts Institute of Technology in 1980. He taught at the University of Michigan (Materials) during 1986-1997 and MIT (Nuclear Engineering; Materials) during 1980-1986. He began ceramic research studying martensitic transformations in zirconia nano crystals, which led to work on transformation plasticity, superplasticity, fatigue, grain growth and sintering in various oxides and nitrides. He is currently interested in nanotechnology of ferroelectrics, thin film memory devices, and nano particles for biomedical applications. A Fellow of American Ceramic Society (1991) and recipient of its Ross Coffin Purdy Award (1994), Edward C. Henry Award

Date de parution :

Ouvrage de 550 p.

17.8x24.6 cm

Sous réserve de disponibilité chez l'éditeur.

Prix indicatif 339,82 €

Ajouter au panier