Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/informatique/sva-the-power-of-assertions-in-systemverilog-2nd-ed/cerny/descriptif_3116716
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3116716

SVA: The Power of Assertions in SystemVerilog (2nd Ed., 2nd ed. 2015)

Langue : Anglais
Couverture de l’ouvrage SVA: The Power of Assertions in SystemVerilog

This book is a comprehensive guide to assertion-based verification of hardware designs using System Verilog Assertions (SVA). It enables readers to minimize the cost of verification by using assertion-based techniques in simulation testing, coverage collection and formal analysis. The book provides detailed descriptions of all the language features of SVA, accompanied by step-by-step examples of how to employ them to construct powerful and reusable sets of properties. The book also shows how SVA fits into the broader System Verilog language, demonstrating the ways that assertions can interact with other System Verilog components. The reader new to hardware verification will benefit from general material describing the nature of design models and behaviors, how they are exercised, and the different roles that assertions play. This second edition covers the features introduced by the recent IEEE 1800-2012.

System Verilog standard, explaining in detail the new and enhanced assertion constructs. The book makes SVA usable and accessible for hardware designers, verification engineers, formal verification specialists and EDA tool developers. With numerous exercises, ranging in depth and difficulty, the book is also suitable as a text for students.

Part I. Opening.- Introduction.- System Verilog Language and Overview.- System Verilog Simulation Semantics.- Part II. Basic Assertions.- Assertion Statements.- Basic Properties.- Basic Sequences.- Assertion System Functions and Tasks.- Part III. Metalanguage Constructs.- Let, Sequence and Property Declarations; Inference.- Checkers.- Part IV. Advanced Assertions.- Advanced Properties.- Advanced Sequences.- Clocks.- Resets.- Procedural Concurrent Assertions.- An Apology for Local Variables.- Mechanics of Local Variables.- Recursive Properties.- Coverage.- Debugging Assertions and Efficiency Considerations.- Part V. Formal Verification.- Introduction to Assertion-Based Formal Verification.- Formal Verification and Models.- Formal Semantics.- Part VI. Advanced Checkers.- Checkers in Formal Verification.- Checker Libraries.- Appendix.- References.- Index.

Eduard Cerny received M.Eng. and Ph.D. degrees in electrical engineering from McGill University, Montreal, in 1970 and 1975, respectively. From 1978 until 2001 he was a professor in the Department Computer Science and Operations Research at the Universite de Montreal. He published and was a consultant in areas related to the specification, simulation, formal verification and test of microelectronics systems and in the development of CAD tools. He joined Synopsys, Inc., in 2001. Currently he is a Scientist in the Marlborough, MA, office as member of the Synopsys Verification Group. His responsibilities include design-for-verification methodology, in particular as related to assertions, with four patents in that area. He was co-chair and member of the IEEE P1800 System Verilog Assertions committee and a co-author of the books Verification Methodology Manual for System Verilog (Kluwer 2006) and The Power of System Verilog Assertions (Springer 2010).

Surrendra Dudani received M.S. and Ph.D. degrees in electrical & computer engineering from Syracuse University, NY, in 1976 and 1980, respectively. From 1980 until 1989, he worked at Honeywell, Prime Computers and Stardent Computers as a Principal Engineer. He developed various design verification languages, CAD tools and methodologies. In 1990, he founded Pragmatics Computing to provide consulting services to hardware and software companies. He pioneered code coverage technology for design verification and introduced one of the first products in the market. He joined Synopsys, Inc., in 1999. Currently he is a Scientist in the Marlborough, MA, office as member of the Synopsys Verification Group. His current responsibilities include developing and managing assertions technology and other techniques for design verification. He holds three patents and has published many papers at conferences. He was a member of the IEEE P1800 System Verilog Assertions committee and a co-author of The Power of System

Provides a comprehensive guide to assertion-based verification with System Verilog Assertions (SVA)

Includes step-by-step examples of how SVA can be used to construct powerful and reusable sets of properties

Covers the entire SVA language with all the recent enhancements of the IEEE 1800-2012 System Verilog standard

Date de parution :

Ouvrage de 590 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

116,04 €

Ajouter au panier

Date de parution :

Ouvrage de 590 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

168,79 €

Ajouter au panier