Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02

Url canonique :
Url courte ou permalien :

Fair Scheduling in High Performance Computing Environments, 1st ed. 2019

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Fair Scheduling in High Performance Computing Environments

This book introduces a new scheduler to fairly and efficiently distribute system resources to many users of varying usage patterns compete for them in large shared computing environments.  The Rawlsian Fair scheduler developed for this effort is shown to boost performance while reducing delay in high performance computing workloads of certain types including the following four types examined in this book:

i.        Class A ? similar but complementary workloads

ii.      Class B ? similar but steady vs intermittent workloads

iii.    Class C ? Large vs small workloads

iv.    Class D ? Large vs noise-like workloads

This new scheduler achieves short-term fairness for small timescale demanding rapid response to varying workloads and usage profiles.  Rawlsian Fair scheduler is shown to consistently benefit workload Classes C and D while it only benefits Classes A and B workloads where they become disproportionate as the number of users increases.

A simulation framework, dSim, simulates the new Rawlsian Fair scheduling mechanism. The dSim helps achieve instantaneous fairness in High Performance Computing environments, effective utilization of computing resources, and user satisfaction through the Rawlsian Fair scheduler.

Chapter 1 Introduction 1.- Chapter 2 Financial Market Risk 9.- Chapter 3 Scheduling in High Performance Computing 24.- Chapter 4 Fairshare Scheduling 33.- Chapter 5 Multi-Criteria Scheduling: A Mathematical Model 43.- Chapter 6 Simulation & Methodology 56.- Chapter 7 DSIM 67.- Chapter 8 Simulation Scenarios 73.- Chapter 9 Overview of Results 90.- Chapter 10 Class A Results and Analysis 101.- Chapter 11 Class B Results and Analysis 118.- Chapter 12 Class C Results and Analysis 139.- Chapter 13 Class D Results and Simulations 153.- Chapter 14 Conclusion 173.

With the prevalence of shared computing environments (cloud for example), how a shared resource (such as a computer/CPU/Core) is distributed and time-shared across many users will be critically important

Current methods and algorithms used to divide resources will simply not work in large shared computing environments.  For a large organization such as a bank, or pharma, the method introduced in this book will allow them to create internal shared services hat will scale to the enterprise

This book applies behavioral economics to computing – which opens the door for many applications across the technology sector to do the same

Date de parution :

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

126,59 €

Ajouter au panier

Thèmes de Fair Scheduling in High Performance Computing Environments :

En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.