Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/informatique/apprentissage-connexionniste/bennani/descriptif-9782746213371
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2138466

Apprentissage connexionniste Traité IC2, série Informatique et Systèmes d'Information

Langue : Français

Coordonnateur : BENNANI Younès

Couverture de l’ouvrage Apprentissage connexionniste
L'apprentissage connexionniste est une discipline scientifique qui recouvre plusieurs aspects d'études mathématiques, statistiques et algorithmiques. Les systèmes d'apprentissage connexionnistes (ou réseaux de neurones artificiels) sont des systèmes numériques permettant la modélisation de processus généraux par l'établissement de modèles fonctionnels. Ceux-ci sont identifiés à partir des observations du processus par des algorithmes dits "d'apprentissage" qui s'apparentent à des techniques d'estimation statistiques. Nés en informatique dans le domaine de l'intelligence artificielle, ils ont connu depuis le début des années 80 un développement intensif dû au succès rencontré dans une très large gamme d'applications. Les réseaux connexionnistes offrent une panoplie de techniques adaptatives pour de nombreux problèmes génériques : la classification, le classement, la modélisation, la prévision. Les applications de ces techniques sont très stratégiques, notamment pour la fouille de données et la reconnaissance des formes. Cet ouvrage présente les fondements théoriques et algorithmiques de l'apprentissage connexionniste. Il s'adresse aux étudiants, élèves-ingénieurs, enseignants, chercheurs, ingénieurs et industriel en informatique et mathématiques appliquées.
Avant-propos. Séparateurs connexionnistes linéaires : Perceptron et Adaline -Y. Bennani. Perceptron multi-couches -F. Badran, M. Lebbah, S. Thiria. Les réseaux récurrents -A. Aussem. Réseaux à fonctions de base radiales -E. Viennet. Réseaux à dictionnaires : Learning Vector Quantization -Y. Bennani. Cartes auto-organisatrices de Kohonen -M. Cottrell, S. Ibbou, P. Letrémy, P. Rousset. Cartes auto-organisatrices temporelles -F. Zehraoui, F. Fessant. Théorie de la résonance adaptative (Adaptive Resonance Theory) -F. Zehraoui. Techniques d'élagage et sélection de variables -M. Yacoub. Estimation et contrôle des performances en généralisation des réseaux de neurones -Y. Guermeur, O. Teytaud. Outils de simulation des réseaux connexionnistes -Y. Bennani. Index.

Date de parution :

Ouvrage de 362 p.

16x24 cm

En stock : expédition en 24h !

103,00 €

Ajouter au panier
PDF 103,00 €
Télécharger
En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.
FERMER