Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/environnement/triboelectric-nanogenerators/wang/descriptif_3616634
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3616634

Triboelectric Nanogenerators, Softcover reprint of the original 1st ed. 2016 Green Energy and Technology Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Triboelectric Nanogenerators

This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors.

The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.

Triboelectrification.- Part A: Fundamental Operation Modes.- Triboelectric Nanogenerator: Vertical Contact-Separation Mode.- Triboelectric Nanogenerator: Lateral Sliding Mode.- Triboelectric Nanogenerator: Single-Electrode Mode.- Triboelectric Nanogenerator: Freestanding Triboelectric-Layer Mode.- Theoretical Modeling of Triboelectric Nanogenerators.- Figure of Merits for Quantifying Triboelectric Nanogenerators.- Part B: Applications as a Sustainable Power Source.- Harvesting Body Motion Energy.- Harvesting Vibration Energy.- Harvesting Wind Energy.- Harvesting Large-Scale Blue Energy.- Hybrid Cell Composed of Triboelectric Nanogenerator.- Applicatons in Self-Powered Systems and Processes.- Self-Powered Sensing for Human-Machine Interface.- Self-Powered Sensing for Vibration and Biomedical Monitoring.- Self-Powered Sensing for Tracking Moving Objects.- Self-Powered Sensing for Chemical and Environmental Detection.

Prof. Zhong Lin Wang is the Hightower Chair in Materials Science and Engineering and Regents' Professor at Georgia Tech. He is also the chief scientist and director of the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences. His discovery and breakthroughs in developing nanogenerators establish the principle and technological road map for harvesting mechanical energy from environment and biological systems for powering a personal electronics. His research on self-powered nanosystems has inspired the worldwide effort in academia and industry for studying energy for micro-nano-systems, which is now a distinct disciplinary in energy research and future sensor networks. Prof. Wang received 2014 World Technology Prize in Materials; 2014 the James C. McGroddy Prize for New Materials from America Physical Society, 2013 ACS Nano Lectureship award, 2012 Edward Orton Memorial Lecture Award and 2009 Purdy Award from American Ceramic Society, 2011 MRS Medal fromthe Materials Research Society, 1999 Burton Medal from Microscopy Society of America.

Dr. Long Lin is a postdoctoral fellow at Georgia Institute of Technology. He received his B.S. in Materials Science and Engineering from Tsinghua University, China in 2010 and his Ph.D. from Georgia Tech in 2015 under the supervision of Prof. Zhong Lin Wang. His research interests include synthesis of semiconductor nanomaterials, piezoelectric nanogenerators, triboelectric nanogenerators, self-powered systems, and active sensors. He has co-authored over 60 peer-reviewed journal publications on Nature, Advanced Materials, Nano Letters, Energy & Environmental Science, etc. His work has been cited over 2000 times by scientists in the field of nanomaterials and energy technology. Dr. Lin received the 2013 Materials Research Society Graduate Student Award, and the 2015 Chinese Government Award for Outstanding Students Abroad. 

Jun Chen received his B.S. and M.S. in Elect

Represents the most comprehensive summary of triboelectric nanogenerators for both scientific research and industrial production Serves as a guide for researchers, students, and engineers Written by world-recognized experts and pioneers in this field, who have made extraordinary contributions to materials science and energy technology Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 517 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

242,64 €

Ajouter au panier

Date de parution :

Ouvrage de 517 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

242,64 €

Ajouter au panier