Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/electricite-electronique/modeling-and-control-for-micro-nano-devices-and-systems/xi/descriptif_2763662
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2763662

Modeling and Control for Micro/Nano Devices and Systems Automation and Control Engineering Series

Langue : Anglais

Coordonnateurs : Xi Ning, Zhang Mingjun, Li Guangyong

Couverture de l’ouvrage Modeling and Control for Micro/Nano Devices and Systems

Micro/nano-scale engineering?especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems?remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged.

The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors? cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.

On the Principles of Quantum Control Theory.Modeling and Simulation of Silicon Nanowire-Based Biosensors. Modeling and Simulation of Organic Photovoltaic Cells. Optimization of Organic Photovoltaic Cells. Developing a Dynamics Model for Epidermal Growth Factor (EGF)-Induced Cellular Signaling Events. Modeling and Experimental Verifications of Cell Tensegrity. Modeling Swimming Micro/Nano-Systems in Low Reynolds Number. Modeling and Analysis of the Cellular Mechanics Involved in the Pathophysiology of Disease/Injury. Hybrid Control for Micro/Nano Devices and Systems.

Control engineers, researchers, and postgraduate students in systems biology.

Author of several award-winning papers in conference proceedings and recognized journals in his field, Ning Xi is the head and chair professor of the department of mechanical and biomedical engineering at City University of Hong Kong, Peoples’ Republic of China. Previously he was a university distinguished professor and John D. Ryder professor of electrical and computer engineering at Michigan State University, East Lansing, USA, where he also served as the director of the robotics and automation laboratory. He received his D.Sc in systems science and mathematics from Washington University, St. Louis, Missouri, USA.

Guangyong Li is an associate professor in the department of electrical and computer engineering at University of Pittsburgh, Pennsylvania, USA. He received his Ph. D in electrical engineering from Michigan State University, East Lansing, USA. He has published numerous papers in peer-reviewed journals and conference proceedings on nanorobotic manipulation, nanoscale characterization, and multiscale simulation of organic solar cells.

A recipient of the U.S. Office of Naval Research’s Young Investigator Award and the IEEE Robotics and Automation Society’s Early Career Award, Mingjun Zhang is an associate professor at the University of Tennessee, Knoxville, USA. Research results from his group have been published in and highlighted by numerous journals in his field. He received his D.Sc from Washington University, St. Louis, Missouri, and his Ph.D from Zhejiang University, Hangzhou, Peoples’ Republic of China.

Date de parution :

15.6x23.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

Prix indicatif 71,13 €

Ajouter au panier

Date de parution :

Ouvrage de 200 p.

15.6x23.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 13 jours).

Prix indicatif 178,41 €

Ajouter au panier