Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02

Url canonique :
Url courte ou permalien :

Spatial Analysis using Big Data Econometrical Methods and Applications

Langue : Anglais

Coordonnateurs : Yamagata Yoshiki, Seya Hajime

Couverture de l’ouvrage Spatial Analysis using Big Data

Spatial Analysis using Big Data: Econometrical Methods and Applications helps readers understand the most powerful, state-of-the-art spatial econometric methods, focusing particularly on urban research problems. The methods represent a cluster of potentially transformational socio-economic modeling tools that allow researchers to capture real-time and high-resolution information to potentially reveal new socioeconomic dynamics within urban populations. Each method, written by leading exponents of the discipline, uses real-time urban big data to solve research problems in spatial science. Urban applications of these methods are provided in unsurpassed depth, with chapters on surface temperature mapping, view value analysis, community clustering and spatial-social networks, among many others.

  • Reviews some of the most powerful and challenging modern methods to study big data problems in spatial science
  • Provides computer codes written in R, MATLAB and Python to help implement methods
  • Applies these methods to common problems observed in urban and regional economics

Part 1. Introduction

Part 2. Methods for big spatial data analysis 1. Spatial statistics and data assimilation 2. Spatial and Temporal statistical models 3. Spatial econometrics and social interaction models 4. Spatial clustering models 5. Complex network models 6. Spatial mobility data models 7. Land use and transport models 8. Land use scenario visualization tools

Part 3. Urban applications of big spatial data analysis 9. Surface temperature mapping for heat wave risk management 10. Spatial heat-wave assessments using Geo-tagged Twitter data 11. Assimilation of cell phone mobility data for agent based simulation 12. Spatial-social network analysis of the patent data 13. CO2 emission mapping using human sensor data 14. Optimal community clustering for sharing economy 15. View value analysis using 3D urban structure data 16. Big Spatial Data Analysis: case studies in New York 17. Big Spatial Data Analysis: case studies in London

Graduate and PhD students, and other early career researchers, who seek to conduct research on urban communities using spatial econometric methods, obviously including spatial statistics and spatial econometrics, but also GIS, computer science, environmental science, and transportation

Yoshiki Yamagata is a Principal researcher at National Institute for Environmental Studies (NIES). He is currently researching climate change risk assessments at the Centre for Global Environmental Research. His current research is focused on applications of big-data and machine learning techniques for designing sustainable cities. Yamagata has published 119 papers.
Hajime Seya received his Ph.D. degree in engineering from University of Tsukuba. His research interests include urban transportation planning, regional science, geographical information science, integrated land-use-transport modeling, and spatial statistics/econometrics. Seya has published 33 papers.

Date de parution :

Ouvrage de 300 p.

15.2x22.9 cm

À paraître, réservez-le dès maintenant

Prix indicatif 145,45 €

Ajouter au panier
En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.