Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/economie/petrochemical-production-technologies/descriptif_3865700
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3865700

Modern Petrochemical Technology Methods, Manufacturing and Applications

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Modern Petrochemical Technology
Modern Petrochemical Technology

A text that explores the essence of petrochemicals and petrochemical technology

Modern Petrochemical Technology: Methods, Manufacturing and Applications is a comprehensive resource that provides an overview of the uses for common petrochemical building blocks, a review of the marketplaces, and offers a survey of the technology used to make the key petrochemical building blocks. The book contains both critical information the technologies used to produce petrochemicals, how the various petrochemicals are applied in industry, and provides illustrative examples and problems designed to reinforce the learning about the basic science, engineering, and use of petrochemicals.

The book explores three seprate petrochemical building block?olefin complexes, aromatic complexes and synthesis gas complexes?and examines the ?interconnected? nature of these building blocks. The authors also include information on the olefins productions using steam cracking, paraffin dehydrogenation, and methanol to olefins technologies and describes various methods, commercial processes to produce aromatics such as benzene, toluene and xylene, and much more. This important book:

  • Offers a guide to the critical information on petrochemical producing technologies
  • Includes material on various petrochemicals from the industrial point-of-view
  • Explores the separation processes, membrane technology, absorption technology, liquid-liquid extraction, and more
  • Contains material from a team of noted experts
  • Provides a survey of examples of commercialization applications of petrochemicals

Written for chemical engineers, chemists in industry, membrane scientists, and process engineers, Modern Petrochemical Technology provides an overview of markets and uses for common petrochemical building blocks as well as includes a survey of the technology used to make the key petrochemical building blocks.

Foreword xi

Preface xiii

Part I Introduction 1

1 Refinery and Petrochemical Processes 3

1.1 Introduction 3

1.2 Petroleum 3

1.2.1 Forms of Petroleum 4

1.2.1.1 Gaseous Petroleum: Gaseous Petroleum Can Be Defined as Natural Gas or Shale Gas 4

1.2.1.2 Liquid Petroleum: Liquid Petroleum Can Be Separated into Light Crude Oil and Heavy Crude Oil 4

1.2.1.3 Solid Petroleum: Bitumen 5

1.2.2 Composition of Petroleum 5

1.2.3 Petroleum Refinery 6

1.2.4 Petroleum Products 9

1.3 Petrochemical Building Blocks 10

References 16

2 Petrochemical Markets 17

2.1 Introduction 17

2.2 The Market for Ethylene 18

2.3 The Market for Propylene 22

2.4 The Market for C4 Olefins and Diolefins 26

2.5 The Market for Aromatic Compounds 32

2.5.1 The Market for Benzene 32

2.5.2 The Market for Toluene 34

2.5.3 The Market for Xylene 36

2.6 The Market for Synthesis Gas 37

2.6.1 The Market for Ammonia 38

2.6.2 The Market for Methanol 39

References 40

Part II Olefins and Synthesis Gas 43

3 Olefins and Synthesis Gas Production Technologies 45

3.1 Introduction 45

3.2 Steam Cracking 45

3.3 Light Paraffin Dehydrogenation 48

3.3.1 Process and Catalyst 48

3.3.1.1 Reactor Section 49

3.3.1.2 Product Recovery Section 50

3.3.1.3 Catalyst Regeneration Section 50

3.3.2 UOP C3 Oleflex Complex 51

3.3.3 UOP Iso-C4 Oleflex Complex 54

3.3.4 UOP C3/C4 Oleflex Complex 56

3.3.5 UOP Mixed-C4 Oleflex Complex 56

3.4 Heavy Normal-paraffin Dehydrogenation 57

3.4.1 Production of Normal-paraffins 58

3.4.2 Production of LAB 59

3.5 Methanol to Olefins 59

3.6 Syngas Production 62

3.6.1 Removal of Impurities in Raw Natural Gas 63

3.6.2 Conversion of Natural Gas to Syngas 64

3.6.2.1 Steam Reforming 65

3.6.2.2 Partial Oxidation 65

3.6.2.3 Autothermal Reforming 66

3.6.3 Coal Gasification to Syngas 67

References 72

4 Uses of Olefins and Synthesis Gas 75

4.1 Introduction 75

4.2 Uses of Ethylene 75

4.2.1 Ethylene to Polyethylene 75

4.2.2 Ethylene to Polyvinyl Chloride 77

4.2.3 Ethylene to Monoethylene Glycol 78

4.3 Uses of Propylene 79

4.3.1 Propylene to Polypropylene 79

4.3.2 Propylene to Propylene Oxide 80

4.3.3 Propylene to Acrylonitrile 81

4.4 Uses of Syngas 82

4.4.1 Syngas to Hydrogen 82

4.4.2 Syngas to Ammonia 82

4.4.3 Syngas to Methanol 83

References 83

Part III Aromatics 85

5 Aromatic Production Technologies 87

5.1 Introduction 87

5.2 Aromatic Production 87

5.2.1 Reforming Technology 88

5.2.1.1 Semi-regenerative Reforming 91

5.2.1.2 Cyclic Reforming 91

5.2.1.3 CCR Reforming 91

5.2.1.4 High-pressure vs. Low-pressure Consideration 94

5.2.2 Aromatic Transalkylation and Disproportionation Technology 95

5.2.2.1 Selective Toluene Disproportionation Process 99

5.2.3 Isomerization of Aromatics 100

5.2.3.1 Reaction Mechanism 100

5.2.4 Toluene Methylation 103

5.2.5 Aromatization of Light Naphtha/Hydrocarbons 105

5.2.5.1 Mechanism 106

5.2.6 Catalytic Cracking 107

5.2.7 Production from Pyrolysis and Coking 111

5.2.7.1 Steam Cracking/Pyrolysis Gasoline 111

5.2.7.2 Coke-oven Benzole 113

5.2.7.3 Biomass Pyrolysis 115

5.3 Summary 119

References 119

6 Uses of Aromatics 121

6.1 Introduction 121

6.2 Polymer Production from Basic Aromatic Building Blocks 121

6.2.1 Ethylbenzene and Styrene Production 122

6.2.2 Cyclohexane to Nylon 6, Nylon 6,6 123

6.2.2.1 Adipic Acid Production 124

6.2.2.2 Caprolactam Synthesis 125

6.2.2.3 Properties of Nylon 6 vs. Nylon 6,6 128

6.2.3 Production of Cumene 128

6.2.3.1 Bisphenol A production 130

6.2.3.2 Production of Nitrobenzene 130

6.2.3.3 Production of Aniline 131

6.2.3.4 Production of MDI and Poly-MDI (PMDI) 131

6.2.3.5 Production of Toluene Diisocyanate (TDI) 131

6.2.3.6 Production of Polyurethane 132

6.2.3.7 Alkylbenzenes and Alkylbenzene Sulfonates 132

6.2.3.8 Maleic Anhydride from Benzene 133

6.2.3.9 Dichlorodiphenyltrichloroethane (DDT) from Benzene 133

6.3 Resins and Chemicals Production 133

6.3.1 Unsaturated Polyester Resins Synthesis 138

6.3.2 Alkyd Resin Synthesis: 139

6.3.3 p-Xylene Oxidation to Terephthalic Acid 139

6.3.4 Poly(ethylene terephthalate), PET, and Poly(ethylene naphthalate), PEN 141

6.4 Summary 142

Acknowledgments 142

References 143

Part IV Industrial Separation 145

7 Adsorption 147

7.1 Principle of Adsorption 147

7.2 Adsorbents 148

7.2.1 Zeolite Adsorbents 148

7.2.2 Zeolite Synthesis 150

7.2.3 Forming Zeolite Powders into Usable Shapes 152

7.2.3.1 Pelletization of Zeolite Powder to Extrudate Adsorbent 153

7.2.3.2 Accretion of Zeolite Powder to Bead Adsorbent 153

7.3 Bulk Liquid-Adsorptive Separation 154

7.3.1 Modes of Liquid-Adsorptive Separation 154

7.3.1.1 Adsorption Isotherms 156

7.3.1.2 Pulse-Test Procedure 156

7.3.1.3 Breakthrough Procedure 157

7.3.1.4 Simulated Moving-Bed Operation: Sorbex Technology 158

7.3.2 Liquid-Adsorptive Separation Processes 159

7.3.2.1 Equilibrium-Selective Adsorption 159

7.3.2.2 Rate-Selective Adsorption 166

7.3.2.3 Shape-Selective Adsorption 168

7.3.2.4 Ion Exchange 169

7.3.2.5 Reactive Adsorption 170

7.4 Commercial Bulk Liquid-Adsorptive Process 170

7.4.1 Parex 170

7.4.2 MX SorbexTM 173

Acknowledgment 174

References 174

8 Distillation 179

8.1 Introduction to Distillation 179

8.2 Principles and Systems 181

8.2.1 Vapor–Liquid Equilibrium (VLE) Theory 181

8.2.2 McCabe–Thiele Diagram 182

8.2.3 Factors for VLE-Based Distillation Design 184

8.2.3.1 Relative Volatility 184

8.2.3.2 Activity Coefficient 185

8.2.3.3 Solubility 185

8.2.3.4 Azeotropes: Maximum Concentration Limit 185

8.2.3.5 Surface Area 186

8.2.4 Operating Modes of Distillation 186

8.2.4.1 Batch vs. Continuous 186

8.2.4.2 Tray vs. Packed Column 187

8.3 Distillation Columns and Trays 188

8.3.1 Flow Within the Distillation Column 188

8.3.2 Multicomponent Distillation 189

8.3.3 Tray Types: Sieve, Valve, Bubble-Cap 190

8.4 Distillation Packing Materials 192

8.4.1 Random Packing 193

8.4.2 Structured Packing 194

8.5 Commercial Examples 195

8.5.1 Crude Oil Distillation 195

8.5.2 Extractive Distillation 198

8.5.3 Azeotropic Distillation 198

8.5.4 DividingWall Column Distillation 198

8.5.5 Reactive Distillation 200

References 200

9 Membranes 203

9.1 Principle and Background 203

9.2 Types and Preparation of Membranes 204

9.2.1 Polymeric Membranes 205

9.2.1.1 Fundamentals of Polymeric Membranes 205

9.2.1.2 Preparation of Polymeric Membranes 207

9.2.2 Inorganic Membranes 213

9.2.2.1 Introduction to Microporous Crystalline Inorganic Membranes 214

9.2.2.2 Preparation of Microporous Crystalline Inorganic Membranes 215

9.2.3 Mixed-matrix Membranes 218

9.2.3.1 Introduction to Mixed-matrix Membranes 219

9.2.3.2 Preparation of Mixed-matrix Membranes 221

9.3 Membrane Modules 223

9.4 Membrane Reactors 225

9.5 Commercial Applications of Membranes 227

References 235

10 Absorption 241

10.1 Introduction to Absorption 241

10.2 Acid Gas Removal 243

10.3 Chemical Solvent 245

10.3.1 Amines Process 246

10.3.1.1 Monoethanolamine (Primary Amine) 248

10.3.1.2 Diethanolamine (Secondary Amine) 248

10.3.1.3 Methyldiethanolamine (Tertiary Amine) 248

10.3.2 BenfieldTM Process 249

10.4 Physical Solvent 251

10.4.1 Solvent Selection 252

10.4.1.1 DMEPG (Dimethyl Ether of Polyethylene Glycol, (CH3O(C2H4O)nCH3)) 252

10.4.1.2 MeOH (Methanol, H3COH) 253

10.4.1.3 PC (Propylene Carbonate, C4H6O3) 254

10.4.2 Flow Schemes 254

10.4.3 SelexolTM Process 255

10.5 Additional Commercial Uses of Absorption 257

10.5.1 Glycol Dehydration 257

10.5.2 Organics from Air (Air Stripping) 259

References 259

11 Extraction Technology 261

11.1 Introduction 261

11.2 Extraction Processes 261

11.2.1 Liquid–Liquid Extraction (LLE) 261

11.2.2 Supercritical Fluid Extraction (SCFE) 263

11.2.3 Liquid–Liquid Extraction vs. Supercritical Fluid Extraction 264

11.3 Solvents 264

11.3.1 Selectivity 264

11.3.2 Recoverability 265

11.3.3 Immiscible 265

11.3.4 Density 265

11.3.5 Chemical Stability 265

11.3.6 Loading Capacity (La) 265

11.4 Extractors 266

11.4.1 Simple Extractor 266

11.4.1.1 Sieve-tray Column 266

11.4.1.2 Packed Column 267

11.4.2 Mechanical Extractors 268

11.4.2.1 Rotary and Reciprocal Extractors 268

11.4.2.2 Centrifugal Extractors 268

11.4.3 Simple Extractors vs. Mechanical Extractors 269

11.5 Industrial Extraction 269

11.5.1 Hydrometallurgy Extraction 269

11.5.1.1 Zirconium/Hafnium Separation 270

11.5.1.2 Uranium/Plutonium Separation 272

11.5.2 Hydrocarbon Extraction 272

11.5.2.1 m-Xylene/Xylene Isomer Separation 272

11.5.2.2 Sulfolane Process 274

11.5.2.3 Merox Process 277

11.6 Summary 280

Acknowledgments 280

References 281

Index 283

Santi Kulprathipanja, PhD., is a Senior Fellow and Director of Southeast Asia Research & Development, Honeywell UOP, USA.

James E. Rekoske, PhD., is the Vice President of Research and Development and Chief Technology Officer of Honeywell UOP, USA.

Daniel Wei, PhD., is the R&D Director at Honeywell UOP, USA.

Robert V. Slone, PhD., is the Vice President and Chief Technology Officer of Honeywell Advanced Materials, USA.

Trung Pham, PhD., is a Senior R&D Engineer in Process Design Development group at Honeywell UOP, USA.

Chunqing Liu, PhD., is the R&D Fellow and Senior Manager of Membranes R&D Group at Honeywell UOP, USA.

Date de parution :

Ouvrage de 320 p.

17x24.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

138,45 €

Ajouter au panier