Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/construction-mecanique/combustion-thermodynamics-and-dynamics/descriptif_3754393
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3754393

Combustion Thermodynamics and Dynamics

Langue : Anglais

Auteur :

Couverture de l’ouvrage Combustion Thermodynamics and Dynamics
This textbook combines rigorous mathematical analysis with combustion science to address standard problems in reactive fluid mechanics.
Combustion Thermodynamics and Dynamics builds on a foundation of thermal science, chemistry, and applied mathematics that will be familiar to most undergraduate aerospace, mechanical, and chemical engineers to give a first-year graduate-level exposition of the thermodynamics, physical chemistry, and dynamics of advection-reaction-diffusion. Special effort is made to link notions of time-independent classical thermodynamics with time-dependent reactive fluid dynamics. In particular, concepts of classical thermochemical equilibrium and stability are discussed in the context of modern nonlinear dynamical systems theory. The first half focuses on time-dependent spatially homogeneous reaction, while the second half considers effects of spatially inhomogeneous advection and diffusion on the reaction dynamics. Attention is focused on systems with realistic detailed chemical kinetics as well as simplified kinetics. Many mathematical details are presented, and several quantitative examples are given. Topics include foundations of thermochemistry, reduced kinetics, reactive Navier?Stokes equations, reaction-diffusion systems, laminar flame, oscillatory combustion, and detonation.
Preface; Part I. Reactive Systems: 1. Introduction to chemical kinetics; 2. Gas mixtures; 3. Mathematical foundations of thermodynamics; 4. Thermochemistry of a single reaction; 5. Thermochemistry of multiple reactions; 6. Nonlinear dynamics of reduced kinetics; Part II. Advective-Reactive-Diffusive Systems: 7. Reactive Navier–Stokes equations; 8. Simple linear combustion; 9. Idealized solid combustion; 10. Premixed laminar flame; 11. Oscillatory combustion; 12. Detonation.
Joseph M. Powers is a professor in the Department of Aerospace and Mechanical Engineering at the University of Notre Dame, Indiana. His research uses computational science to consider the dynamics of high-speed reactive fluids, especially as it applies to verification and validation of complex multiscale systems. He has held positions at the NASA Lewis Research Center, the Air Force Research Laboratory, the Los Alamos National Laboratory, and the Chinese Academy of Sciences. He is a member of AIAA, APS, ASME, the Combustion Institute, and SIAM, and is the recipient of numerous teaching awards.

Date de parution :

Ouvrage de 474 p.

18.5x26 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

Prix indicatif 66,26 €

Ajouter au panier

Thème de Combustion Thermodynamics and Dynamics :