Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/reaction-rate-theory-and-rare-events/descriptif_3772255
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3772255

Reaction Rate Theory and Rare Events

Langue : Anglais

Auteur :

Couverture de l’ouvrage Reaction Rate Theory and Rare Events

Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events.

In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies.

1. Introduction2. Chemical equilibrium3. Rate laws4. Catalysis5. Diffusion control6. Collision theory7. Potential energy surfaces and dynamics8. Saddles on the energy landscape9. Unimolecular reactions10. Transition state theory11. Landau free energies and restricted averages12. Tunneling13. Reactive flux14. Discrete stochastic variables15. Continuous stochastic variables16. Kramers theory17. Grote-Hynes theory18. Diffusion over barriers19. Transition path sampling20. Reaction coordinates and mechanisms21. Nonadiabatic reactions22. Free energy relationships

Chemists, physicists, and engineers worldwide who use computational methods to study activated processes will be interested in this book. Academics, Graduate students, and Researchers in National Labs and corporate Research centers. The book could be used for teaching graduate courses

Baron Peters (1976 - ) is from Moberly, Missouri. He completed a B.S. in Chemical Engineering and a B.S. in Mathematics at the University of Missouri - Columbia. He studied catalysis and reaction rate theory to obtain a PhD with Alex Bell and Arup Chakraborty at the University of California - Berkeley in 2004. He then worked as a post-doc with Bernhardt Trout at the Massachusetts Institute of Technology, and with Berend Smit at the Centre Europeen de Calcul Atomique et Moleculaire (CECAM). Baron is currently a professor in the Department of Chemical Engineering and in the Department of Chemistry and Biochemistry at the University of California - Santa Barbara. Baron has contributed several leading computational methods and theoretical advances for understanding chemical reaction rates, heterogeneous catalysis, enzyme catalysis, and also rare events like crystal nucleation kinetics. He is among the few investigators whose research bridges the historical gap between the theory of chemical reaction rates and the theory of other types of rare events.
  • Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere
  • Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events
  • Uses graphics and explicit examples to explain concepts
  • Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises

Date de parution :

Ouvrage de 634 p.

19x23.3 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

102,64 €

Ajouter au panier

Thèmes de Reaction Rate Theory and Rare Events :