Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/perovskites-and-related-mixed-oxides/descriptif_3863973
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3863973

Perovskites and Related Mixed Oxides Concepts and Applications

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Perovskites and Related Mixed Oxides
This comprehensive handbook and ready reference details all the main achievements in the field of perovskite–based and related mixed–oxide materials. The authors discuss, in an unbiased manner, the potentials as well as the challenges related to their use, thus offering new perspectives for research and development on both an academic and industrial level.
The first volume begins by summarizing the different synthesis routes from molten salts at high temperatures to colloidal crystal template methods, before going on to focus on the physical properties of the resulting materials and their related applications in the fields of electronics, energy harvesting, and storage as well as electromechanics and superconductivity. The second volume is dedicated to the catalytic applications of perovskites and related mixed oxides, including, but not limited to total oxidation of hydrocarbons, dry reforming of methane and denitrogenation. The concluding section deals with the development of chemical reactors and novel perovskite–based applications, such as fuel cells and high–performance ceramic membranes. Throughout, the contributions clearly point out the intimate links between structure, properties and applications of these materials, making this an invaluable tool for materials scientists and for catalytic and physical chemists.

List of Contributors XXIII

Preface XXXV

Volume 1 Part One Rational Design and Related Physical Properties 1

1 From Solid–State Chemistry to Soft Chemistry Routes 3
Vicente Rives

1.1 Introduction 3

1.2 Processes Involving Solids 4

1.2.1 The Ceramic Method 4

1.2.2 Microwave Synthesis 5

1.2.3 Self–Propagating High–Temperature Synthesis (SHS) 6

1.2.4 The Precursor Method 6

1.2.5 Hydrothermal Synthesis 7

1.2.6 High–Pressure Methods 8

1.2.7 Mechanochemistry 8

1.2.8 Other Methods Starting from Solids 9

1.3 Processes Involving Liquids 9

1.3.1 Flux Method 9

1.3.2 Molten Salt Electrolysis 10

1.3.3 Sol Gel 10

1.3.4 Spray Drying (SD) and Related Methods 13

1.3.4.1 Freeze–Drying 14

1.3.4.2 Spray Freeze–Drying 14

1.3.5 Molecular Self–Assembling 14

1.3.6 Other Methods Starting from Liquid Reactants or Solutions 15

1.3.6.1 Ionic Liquids 15

1.3.6.2 The Gel Combustion Method 15

1.3.6.3 Sonication 15

1.3.6.4 Reverse Microemulsion 15

1.4 Processes Involving Gases or Vapors 16

1.4.1 Gas Flame Combustion 16

1.4.2 Chemical Vapor Deposition (CVD) 16

1.5 Single Crystals 16

1.6 Nanoparticles 18

1.7 Films 19

1.8 Conclusions 19

References 20

2 Mechanochemistry 25
Houshang Alamdari and Sébastien Royer

2.1 Introduction 25

2.2 Historical Development 25

2.3 Terminology 28

2.4 Mechanosynthesis Process 29

2.5 Milling Facilities 32

2.5.1 Spex Mills 32

2.5.2 Planetary Mills 34

2.5.3 Attrition Mills 35

2.5.4 Zoz Mills 36

2.6 Mechanosynthesis of Perovskites 37

2.6.1 Looking for an Alternative Route to Synthesize New Compositions 38

2.6.2 Lowering Sintering Temperature 38

2.6.3 Reducing Crystallite Size and Modifying Particle Morphology 39

2.6.4 Increasing Specific Surface Area 40

2.7 Concluding Remarks 42

References 43

3 Synthesis and Catalytic Applications of Nanocast Oxide–Type Perovskites 47
Mahesh Muraleedharan Nair and Serge Kaliaguine

3.1 Introduction 47

3.2 Perovskite Structure 48

3.3 Evolution of Perovskite Synthesis 49

3.4 General Principles of Nanocasting 51

3.5 Nanocasting of Perovskites 52

3.6 Catalytic Studies 56

3.6.1 Total Oxidation of Methane 56

3.6.2 Reduction of NO to N2 57

3.6.3 Chemical Looping Combustion 58

3.6.4 Total Oxidation of Methanol 59

3.6.5 Dry Reforming of Methane 60

3.7 Conclusions and Perspectives 63

References 64

4 Aerosol Spray Synthesis of Powder Perovskite–Type Oxides 69
Davide Ferri, Andre Heel, and Dariusz Burnat

4.1 Introduction 69

4.2 Flame Spray Synthesis 71

4.2.1 Methane Flame 72

4.2.2 Acetylene Flame 75

4.3 Flame Hydrolysis 80

4.4 Ultrasonic Spray Synthesis 82

4.4.1 General Particle Properties 83

4.4.2 Citric Acid Assisted Synthesis 85

References 87

5 Application of Microwave and Ultrasound Irradiation in the Synthesis of Perovskite–Type Oxides ABO3 91
Juan C. Colmenares, Agnieszka Magdziarz, and Pawe³ Lisowski

5.1 Introduction 91

5.2 Microwave Methodology 92

5.2.1 Basic Concepts of Microwave Chemistry 92

5.2.2 Microwave Heating in Combination with Traditional Synthesis Methods 93

5.2.2.1 Microwave–Assisted Hydrothermal Method (HTMW) 93

5.2.2.2 Other Microwave–Assisted Methods 100

5.3 Ultrasound Methodology 101

5.3.1 Basic Concepts of Ultrasound Chemistry 101

5.3.2 Ultrasound–Assisted Coprecipitation Method 102

5.3.3 Ultrasound–Assisted Sol Gel Method 103

5.3.4 Ultrasound Spray Pyrolysis 105

5.3.5 Other Ultrasound–Assisted Methods 107

5.4 Concluding Remarks and Outlook 108

Acknowledgments 108

References 109

6 Three–Dimensionally Ordered Macroporous (3DOM) Perovskite Mixed Metal Oxides 113
Masahiro Sadakane and Wataru Ueda

6.1 Introduction 113

6.2 3DOM Materials 114

6.2.1 Preparation of 3DOM Materials 114

6.2.1.1 Colloidal Crystal Templates 114

6.2.1.2 Infiltration of Precursors in the Voids of Templates 122

6.2.1.3 Removal of Templates 122

6.2.2 Structure of 3DOM Materials (Inverse Opal Structures) 122

6.3 Preparation of 3DOM Perovskite Mixed Metal Oxides 123

6.3.1 Precursor Solution 123

6.3.2 Selection of Sphere Templates 126

6.3.3 Synthesis Methods and Applications of 3DOM Perovskite Mixed Metal Oxides 127

6.3.4 Preparation of 3DOM LaFeO3 with Different Pore Sizes 131

6.3.4.1 Preparation of Polymer Spheres and Colloidal Crystal Templates 131

6.3.4.2 Synthesis of 3DOM LaFeO3 134

6.3.4.3 Characterization of 3DOM LaFeO3 134

6.3.4.4 Formation Mechanism 136

6.4 Conclusions 138

References 138

7 Thin Films and Superlattice Synthesis 143
Carmela Aruta and Antonello Tebano

7.1 Introduction 143

7.2 Thin Films and Superlattices Growth 145

7.2.1 Deposition Techniques 145

7.2.1.1 MBE 145

7.2.1.2 PLD 149

7.2.1.3 Sputtering 153

7.2.2 In Situ Monitoring: RHEED and Plume Analysis 156

7.2.2.1 RHEED 156

7.2.2.2 Plume Analysis 159

7.3 Concluding Remarks 162

Acknowledgments 162

References 162

8 Perovskite and Derivative Compounds as Mixed Ionic Electronic Conductors 169
Caroline Pirovano, Aurélie Rolle, and Rose–Noëlle Vannier

8.1 Introduction 169

8.2 Perovskite as Mixed Ionic Electronic Conductors 170

8.2.1 The Perovskite: A Flexible Structure for Mixed Ionic Electronic Conductivity 170

8.2.2 Cobaltites: Among the Best MIEC Materials 173

8.2.3 MIEC Electrochemical Performances as SOFC or SOEC Electrodes 173

8.3 Conductivity and Oxygen Transport Properties in Mixed Ionic– and Electronic–Conducting Perovskites 176

8.3.1 Electrical Conductivity 177

8.3.2 Diffusion Coefficients 177

8.3.3 Surface Exchange Coefficients 179

8.3.4 Perovskite Materials and Related Compounds Oxygen Transport Parameters 180

8.4 Conclusions 183

References 184

9 Perovskite and Related Oxides for Energy Harvesting by Thermoelectricity 189
Sascha Populoh, O. Brunko, L. Karvonen, L. Sagarna, G. Saucke, P. Thiel, M. Trottmann, N. Vogel–Schäuble, and A. Weidenkaff

9.1 Introduction to Thermoelectricity 189

9.2 CaMnO3–Based Compounds 190

9.3 EuTiO3 and Related Compounds 196

9.4 SrCoO3 and Related Phases 199

9.5 ZnO for Thermoelectric Applications 200

9.6 Thermoelectric Oxide Modules and Their Characterization 202

9.7 Concluding Remarks 204

References 204

10 Piezoelectrics and Multifunctional Composites 211
Ranjith Ramadurai and Vijayanandhini Kannan

10.1 History 211

10.2 Piezoelectricity: An Introduction 211

10.3 Piezoelectric Materials: An Overview 214

10.4 Lead–Free Piezoelectrics 215

10.4.1 BaTiO3 CaTiO3 BaZrO3 Solid Solutions 216

10.4.2 Structural Phase Diagram of BZT BCT 217

10.4.3 Piezoelectric Properties of BCT BZT 218

10.4.4 (Na0.5Bi0.5)TiO3 219

10.5 Piezoelectric Polymers 221

10.5.1 Polyvinylidene Fluoride 222

10.6 Piezoelectric Composites 223

10.7 Polymer Ceramic Hybrid Piezoelectric Composites 225

10.8 Multifunctional Piezoelectric Composites 226

10.9 Summary 229

References 230

11 Microstructure and Nanoscale Piezoelectric/Ferroelectric Properties in Ln2Ti2O7 (Ln = Lanthanide) Thin Films with Layered Perovskite Structure 233
Sébastien Saitzek, ZhenMian Shao, Alexandre Bayart, Pascal Roussel, and Rachel Desfeux

11.1 Introduction and Overview of Layered Perovskite Structures 233

11.2 Ln2Ti2O7 Compounds 236

11.2.1 Structural Properties of Ln2Ti2O7 with Ln = Lanthanide 236

11.2.2 Synthesis Way 237

11.2.3 Scope and Properties of the Ln2Ti2O7 Oxides 238

11.3 Growth and Structural Characterization of Ln2Ti2O7 Thin Films 239

11.3.1 Growth on (100)–Oriented SrTiO3 Substrates 239

11.3.2 Growth on (110)–Oriented SrTiO3 Substrates 242

11.3.3 Limit of Stability of the Layered Perovskite Structure 243

11.4 Piezo– and Ferroelectric Properties of Ln2Ti2O7 Thin Films 244

11.4.1 Experimental Setup 244

11.4.2 Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (110)–Oriented SrTiO3 Substrates 246

11.4.3 Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (100)–Oriented SrTiO3 Substrates 247

11.4.4 Metastable Ln2Ti2O7 (Ln = Sm, Eu, and Gd) Thin Films Grown on (110)–Oriented SrTiO3 Substrates 249

11.5 Conclusion 250

Acknowledgments 251

References 251

12 Pigments Based on Perovskite 259
Matteo Ardit, Giuseppe Cruciani, Michele Dondi, and Chiara Zanelli

12.1 Introduction 259

12.2 Perovskite Pigments 259

12.2.1 Red and Orange 261

12.2.2 Yellow 261

12.2.3 Brown to Light Brown 262

12.2.4 Magenta to Pink 263

12.2.5 Blue 263

12.2.6 Black 263

12.3 (Y, REE) Aluminate Perovskites: Crystal Chemistry and Structural Principles 263

12.3.1 Crystal Structure of Ideal and Distorted Ternary ABO3 Perovskites 263

12.3.2 Lattice Parameters, A Site Coordination, and Bond Valence Analysis in (Y,REE) Orthoaluminates 264

12.3.3 Tilting of Octahedral Framework and Tolerance Factor 268

12.4 Chromium Incorporation: Basic Concepts and the YAlO3 YCrO3 Case Study 269

12.4.1 Local Bond Distances 269

12.4.2 Structural Relaxation Coefficient 270

12.4.3 Comparison with Other Al Cr Solid Solutions 271

12.4.4 Polyhedral Bond Valence Method 272

Case Study 274

12.5 Origin of Color in (Y, REE) Orthoaluminates 279

References 284

13 Electrolyte Materials 289
Viorica Parvulescu

13.1 Introduction 289

13.2 Properties of Solid Electrolyte Materials 290

13.2.1 Synthesis Methods and Properties of Mixed Oxides Electrolytes 290

13.2.2 The Crystalline Phases and Conductivity 294

13.3 Mixed Oxides with Ionic Conductivity 295

13.3.1 Solid Electrolytes Based on ZrO2 296

13.3.2 Solid Electrolytes Based on CeO2 298

13.4 Mixed Oxides with Mixed Conductivity 301

13.5 Applications of Mixed Oxides as Electrolytes and Mixed Conductors 303

13.6 Conclusions 306

References 306

14 CO2 Capture Using Dense Perovskite Membranes: Permeation Models 311
Marc Pera–Titus

14.1 MIEC Membranes for Gas Separation 311

14.2 Background for Mass Transfer Modeling in Perovskite Membranes 312

14.3 Gas Permeation Models for Perovskite Membranes 315

14.3.1 Single–Phase Perovskite Membranes 316

14.3.1.1 Models for O2 Semipermeation 318

14.3.1.2 Models for H2 Semipermeation 322

14.3.2 Dual–Phase Perovskite Membranes 325

14.3.2.1 Models for H2 Semipermeation within Supported Ni/Perovskite DFMs 326

14.3.2.2 Models for H2 Semipermeation in Ni–Cermets DFMs 326

14.3.2.3 Models for CO2 Semipermeation in Infiltrated MC/Perovskite DPMs 327

14.4 Measurement of Diffusion and Surface Exchange Coefficients 329

14.4.1 Semipermeation Coupled to Electrical Potential Measurements 329

14.4.2 Isotopic Exchange Depth Profile (IEDP) 331

14.4.3 Electrical Conductivity Relaxation (ECR) 333

14.4.4 Electrochemical Impedance Spectroscopy (EIS) 333

14.4.5 Diffusion and Surface Exchange Coefficients: Structure Property Correlations 334

14.5 Conclusions 334

Glossary 335

Greek Symbols 336

Subscripts 336

Superscripts 337

Acronyms 337

References 337

15 Introduction to Rational Molecular Modeling Approaches 343
Randy Jalem and Masanobu Nakayama

15.1 Introduction 343

15.2 Theoretical Background on Ab Initio Calculation 343

15.2.1 Brief Review of Elementary Quantum Chemistry 343

15.2.2 Density Functional Theory 346

15.3 Simulation Model Construction 347

15.4 Electronic Structure 349

15.5 Ionic Transport 351

15.6 Atomic Arrangement, Phase Stability, and Transition 354

15.7 Conclusions and Outlook 359

References 360

Volume 2

Part Two Perovskite and Related Mixed Oxides in Catalysis: From the Structure to the Catalytic Properties 367

16 Methane Combustion on Perovskites 369
Athanasios Ladavos and Philippos Pomonis

16.1 Perovskites as a Diverse and Active Class of Materials 369

16.1.1 Structural Diversity, Tolerance Factor, and Thermodynamic Stability 370

16.2 Mixed Valences in Perovskites 371

16.2.1 Mixed Valences Due to Anion Deficiencies 371

16.2.2 Mixed Valences Due to Isostructural Substitution of Cations 373

16.3 The Reversed Uptake of Oxygen and Its Different Sources 373

16.4 The Mechanism of Methane Combustion 376

16.5 Kinetics of Methane Combustion 378

16.5.1 Rideal Eley kinetics 379

16.5.2 First–Order Kinetics 380

16.5.3 The Power Law Kinetics 384

16.5.4 The Two Term Kinetics 385

16.6 Conclusions 386

Acknowledgments 387

References 387

17 Total Oxidation of Volatile Organic Compounds 389
Vasile I. Parvulescu

17.1 Introduction 389

17.2 Specificity of Perovskites for Total Oxidation of VOCs 391

17.3 Morphology of Perovskites Investigated for Total Oxidation of VOCs 395

17.4 Total Oxidation of VOCs under Thermal Activation Conditions 397

17.5 Total Oxidation of Light Hydrocarbons 399

17.6 Total Oxidation of Oxygenated Organic Compounds 401

17.7 Total Oxidation of Halogenated Organic Compounds 402

17.8 Total Oxidation under Plasma Activation Conditions in Gas 404

17.9 Photocatalytic Destruction of VOC 406

17.10 Conclusions 407

References 408

18 Total Oxidation of Heavy Hydrocarbons and Aromatics 413
Vasile I. Parvulescu and Pascal Granger

18.1 Introduction 413

18.2 Perovskites and Oxygen Vacancy 414

18.3 Total Oxidation under Thermal Activation Conditions 416

18.4 Total Oxidation of Aromatic Hydrocarbons 417

18.5 Total Oxidation of Polycyclic Aromatic Hydrocarbons 424

18.6 Total Oxidation of Soot 425

18.7 Total Oxidation of Halogenated Hydrocarbons 426

18.8 Total Oxidation under Plasma Activation Conditions 428

18.9 Total Oxidation of Aromatics 429

18.10 Total Oxidation of Soot 431

18.11 Conclusions 431

References 432

19 Progresses on Soot Combustion Perovskite Catalysts 437
Agustín Bueno–López

19.1 Introduction 437

19.2 Particular Aspects of the Soot Combustion Reactions 438

19.3 Soot Combustion Perovskite Catalysts: Effect of Partial Substitution of Cations in the Perovskite Oxide 439

19.4 Kinetic and Mechanistic Studies 442

19.5 Three–Dimensionally Ordered Macroporous Soot Combustion Perovskite Catalysts 444

19.6 Study of Soot Combustion Perovskite Catalysts in Real Diesel Exhausts 445

19.7 Microwave–Assisted Perovskite–Catalyzed Soot Combustion 446

19.8 Deactivation of Soot Combustion Catalysts by Perovskite Structure Formation 446

19.9 Conclusions 446

Acknowledgments 447

References 447

20 Low–Temperature CO Oxidation 451
Oscar H. Laguna, Luis F. Bobadilla, Willinton Y. Hernández, and Miguel Angel Centeno

20.1 Overview 451

20.2 Low–Temperature CO Oxidation Reaction 453

20.2.1 LaBO3–Type Perovskites 454

20.2.3 Noble Metal Perovskite Hybrid Materials 456

20.3 H2 Purification–Related CO Oxidations: Water–Gas Shift (WGS) and PROX Reactions 459

20.3.1 Perovskites for the Water–Gas Shift Reaction 460

20.3.2 Perovskites for the Preferential CO Oxidation in the Presence of H2 (PROX) 464

20.4 Concluding Remarks 468

Acknowledgments 468

References 468

21 Liquid–Phase Catalytic Oxidations with Perovskites and Related Mixed Oxides 475
Viorica Parvulescu

21.1 Introduction 475

21.2 Active Sites and Oxidants 476

21.3 Catalytic Reactions with Green Oxidants 480

21.3.1 Perovskites Catalysts 480

21.3.2 Microporous Mixed Oxide Catalysts 483

21.3.3 Mesoporous Mixed Oxide Catalysts 486

21.4 Heterogeneous Photo–Fenton Oxidation 488

21.4.1 Photo–Fenton Reactions with Perovskites 490

21.4.2 Photo–Fenton Reactions with Porous Mixed Oxides 491

21.5 Photocatalytic Ozonation Reactions 492

21.6 Conclusions 493

References 494

22 Dry Reforming of Methane 501
Catherine Batiot–Dupeyrat

22.1 Introduction 501

22.2 LaNiO3 as Catalyst Precursor for Carbon Dioxide Reforming of Methane 502

22.5 Perovskite as Support of Active Sites in the Dry Reforming of Methane 510

22.6 Supported Perovskite for Dry Reforming of Methane 510

22.7 Conclusion 512

References 512

23 Recent Progress in Oxidative Conversion of Methane to Value–Added Products 517
Evgenii V. Kondratenko and Uwe Rodemerck

23.1 Methane: Sources and Feedstock for Chemical Industry 517

23.2 Oxidative Coupling of Methane 519

23.2.1 OCM Reactors and Modes of Operation 520

23.2.2 OCM Process Concepts 522

23.2.3 Strategies for Developing New OCM Catalysts 526

23.3 Methane to Methanol and Its Derivatives 528

23.4 Methane to Acetic Acid 530

23.5 Conclusions 532

References 533

24 Steam Reforming of Alcohols from Biomass Conversion for H2 Production 539
Florence Epron, Nicolas Bion, Daniel Duprez, and Catherine Batiot–Dupeyrat

24.1 Introduction 539

24.2 Generalities on Alcohol Steam Reforming 539

24.2.1 Types of Alcohols Used 539

24.2.2 Reactions Involved and Thermodynamic Data 540

24.2.2.1 Ethanol Steam Reforming 540

24.2.2.2 Glycerol Steam Reforming 542

24.3 Catalysts 544

24.3.1 Types of Catalysts Used 544

24.3.1.1 Noble Metal Catalysts 545

24.3.1.2 Non–Noble Metal Catalysts 545

24.3.1.3 Effect of the Support 546

24.3.2 Why Perovskite–Type Catalysts are Good Candidates? 547

24.3.3 General Assessement 549

24.4 Catalytic Performances of Perovskite–Type Catalysts for H2 Production from Alcohols 549

24.4.1 Ethanol Steam Reforming 549

24.4.2 Glycerol Steam Reforming 551

24.5 Summary and Outlook 552

References 553

25 Three–Way Catalysis 559
Ioannis V. Yentekakis and Michalis Konsolakis

25.1 Three–Way Catalytic Converters (TWCs): An Introduction 559

25.2 Three–Way Catalytic Materials: Potentials/Aptitudes, Limitations, and Future Trends 563

25.3 Three–Way Catalysis by Ceria and Ceria–Based Mixed Oxides 565

25.3.1 CO Oxidation 567

25.3.2 Oxidation of Hydrocarbons 568

25.3.3 NO Reduction by CO or HCs 568

25.3.4 Simulated Stoichiometric Exhaust Conditions 568

25.4 Application of Perovskites in Exhaust Emission Control 570

25.4.1 Model Reactions 572

25.4.1.1 CO Oxidation 572

25.4.1.2 N2O Decomposition 573

25.4.1.3 NO Reduction by CO 573

25.4.1.4 NO Reduction by Propene 575

25.4.2 Simulated Exhaust Conditions 576

25.5 Conclusions and Guidelines 579

References 580

26 Lean Burn DeNOx Applications: Stationary and Mobile Sources 587
Angelos M. Efstathiou and Vasilis N. Stathopoulos

26.1 Scope 587

26.2 Introduction 588

26.2.1 Hydrogen–Selective Catalytic Reduction (H2–SCR) 588

26.2.2 Lean NOx After Treatment of Diesel Engine Emissions 590

26.3 Case Studies 594

26.3.1 H2–SCR of NO 594

26.3.2 Lean NOx Trap 601

26.3.3 Simultaneous NOx Reduction and Soot Oxidation 605

26.4 Concluding Remarks 605

References 606

27 Catalytic Abatement of N2O from Stationary Sources 611
Pascal Jean–Philippe Dacquin and Christophe Dujardin

27.1 Introduction 611

27.2 The Abatement of N2O From Nitric Acid Plant: A Case Study 613

27.2.1 Different Possible Scenarios 613

27.2.2 High–Temperature Decomposition of N2O 615

27.2.3 Medium–Temperature Decomposition of N2O 618

27.2.4 End–of–Pipe Technologies 622

27.3 Conclusion 626

References 627

28 Perovskites as Catalyst Precursors for Fischer Tropsch Synthesis 631
Anne–Cécile Roger and Alain Kiennemann

28.1 Introduction 631

28.2 Alcohols Synthesis 632

28.2.1 Methanol Synthesis 633

28.2.2 Higher Alcohols Synthesis 638

28.2.2.1 Ethanol Synthesis 638

28.2.2.2 C1 Cn Alcohols Synthesis 639

28.3 Hydrocarbons Synthesis 644

28.4 Conclusions 654

References 654

29 FexZr1 xO2 and Ce1 xFexO2 Mixed Oxide Catalysts: DRIFTS Analyses of Synthesis Gas and TPSR of Propane Dry Reforming 659
Rodrigo Brackmann, Ricardo Scheunemann, Andre Luiz Alberton, and Martin Schmal

29.1 Introduction 659

29.2.1.1 CO Adsorption 661

29.2.1.2 Adsorption of CO+O2+He 663

29.2.1.3 Adsorption of CO+O2+H2+He 664

29.2.2.1 Thermodynamics 667

29.2.2.2 Temperature–Programmed Surface Reaction 667

29.3 Conclusions 671

References 672

30 Photocatalytic Assisted Processes 675
Bogdan Cojocaru and Vasile I. Parvulescu

30.1 Introduction 675

30.2 Titanates 677

30.2.1 Calcium Titanates 677

30.2.2 Strontium Titanates 678

30.2.3 Barium Titanates 683

30.2.4 Lanthanum Titanates 684

30.2.5 Iron Titanates 685

30.2.6 Other Titanates 685

30.2.7 Bismuth Titanates 686

30.3 Ferrites 686

30.3.1 Calcium Ferrites 686

30.3.2 Strontium Ferrites 686

30.3.3 Barium Ferrites 687

30.3.4 Yttrium Ferrites 687

30.3.5 Rare Earth Ferrites 688

30.3.6 Other Ferrites 689

30.4 Conclusions 690

References 690

Part Three Future Prospects from Synthesis to Reactor Design 699

31 Mesoporous TM Oxide Materials by Surfactant–Assisted Soft Templating 701
Altug S. Poyraz, Yongtao Meng, Sourav Biswas, and Steven L. Suib

31.1 Introduction 701

31.1.1 Use of a Hard Template 701

31.1.2 Mesoporous Oxide Materials by Chemical Transformation 702

31.1.3 Mesoporous Oxide Materials by Soft Micelle Templating 703

31.2 Surfactant and Micelleization 705

31.2.1 Types of Surfactants 705

31.2.2 Inorganic Additives 705

31.2.3 Organic Additives 706

31.3 Surfactant Inorganic (S I) Interactions 707

31.3.1 Thermodynamics of Mesostructured Materials 707

31.3.2 Surfactant Inorganic ( Ginter) Interactions 707

31.3.2.1 Coulombic S I Interactions for Mesoporous TM Oxides 708

31.3.2.2 Covalent S I Interactions for Mesoporous TM Oxides 709

31.3.2.3 S to I Charge Transfer Interactions for Mesoporous TM Oxides 710

31.3.2.4 Hydrogen–Bonding (S I) Interactions for Mesoporous TM Oxides 711

31.4 Stability of a Mesoporous TM Oxide 712

31.4.1 Template Removal 713

31.5 Summary and Future Prospects 713

References 714

32 Development of Robust Mixed–Conducting Membranes with High Permeability and Stability 719
Tomás Ramirez–Reina, José Luis Santos, Nuria García–Moncada, Svetlana Ivanova, and José Antonio Odriozola

32.1 Overview 719

32.2 Mechanical Robustness 721

32.3 Chemical Robustness 725

32.3.1 Tolerance Toward CO2 725

32.3.2 Tolerance Toward SO2 729

32.3.3 Tolerance Toward Reducing Environments 731

32.4 Future Applications 732

References 732

33 Catalytic Reactors with Membrane Separation 739
Fausto Gallucci and Jon Zuniga

33.1 Introduction 739

33.2 Types of Reactors 740

33.2.1 Packed Bed Membrane Reactors 740

33.2.2 Fluidized Bed Membrane Reactors 744

33.3 Membranes for O2 Separation 753

33.3.1 Membrane Sealing 755

33.4 Membrane Reactors with O2 Membranes 758

33.5 Conclusions 768

References 768

34 The Development of Millistructured Reactors for High Temperature and Short Time Contact 773
Ana Raquel de la Osa, Anne Giroir–Fendler, and Jose Luis Valverde

34.1 Introduction 773

34.2 Classification of Microreactors 774

34.2.1 Capacity 775

34.2.2 Material 775

34.2.3 Reaction Phase 776

34.2.3.1 Reactions Involving Liquids 776

34.2.3.2 Gas Phase 776

34.2.3.3 Catalytic Reactions Involving Three Phases 777

34.2.4 Catalytic System 777

34.2.5 Other Configurations 778

34.3 Applications and Possible Scale–up 778

34.3.1 Ammonia Oxidation 779

34.3.2 Diesel Particulate Combustion 779

34.3.3 Ethylene Oxide Synthesis 779

34.3.4 Oxidative Coupling of Methane 779

34.3.5 Hydrogenation Reactions 780

34.3.5.1 Hydrogenation of Benzene to Cyclohexene 780

34.3.5.2 Hydrogenation of Cyclohexene 780

34.3.6 Dehydrogenation Reactions 780

34.3.6.1 Dehydrogenation of Methylcyclohexane 780

34.3.6.2 Dehydrogenation of Cyclohexane 780

34.3.6.3 Oxidative Dehydrogenation of Methanol 781

34.3.6.4 Dehydrogenation of Alkanes 781

34.3.7 Synthesis Gas Production 781

34.3.7.1 Steam Methane Reforming 781

34.3.7.2 Partial Oxidation of Methane 781

34.3.8 Fuel Production 781

34.3.8.1 Direct Partial Oxidation of Methane to C1 Oxygenates 781

34.3.8.2 Total Syngas Methanation to Synthetic Natural Gas 782

34.3.8.3 Fischer Tropsch Synthesis 782

34.3.8.4 Synthesis of Methanol and Ethanol 783

34.3.8.5 Synthesis of Dimethyl Ether 783

34.3.8.6 Biodiesel Production 783

34.3.8.7 Hydrogen Production 784

34.4 Simulation Case 785

34.5 Conclusions 789

References 791

35 Single Brick Solution for Lean–Burn DeNOx and Soot Abatement 797
Sonia Gil, Jesus Manuel Garcia–Vargas, Leonarda F. Liotta, Philippe Vernoux, and Anne Giroir–Fendler

35.1 Introduction 797

35.2 Diesel Posttreatment 799

35.2.1 Specificity of Diesel Engine 799

35.2.2 Diesel Unburned Hydrocarbon and Carbon Monoxide Oxidation 799

35.2.3 Treatment of Soot 801

35.2.4 DeNOx Reduction 803

35.2.4.1 Urea and NH3 Selective Catalytic Reduction 804

35.2.4.2 Single Brick Solution for Lean–Burn DeNOx and Soot Abatement 807

35.3 Conclusion 810

References 811

36 Tools for the Kinetics of Fast Reactions 817
Gregory Biausque, Marie Rochoux, David Farrusseng, and Yves Schuurman

36.1 Introduction 817

36.2 Oxygen Interaction 817

36.2.1 Oxygen Nonstoichiometry 818

36.2.2 Oxygen Isotopic Exchange Techniques 819

36.2.3 Secondary Ion Mass Spectrometry 819

36.2.4 Steady–State Isotopic Transient Oxygen Exchange 819

36.2.5 Case Study: Prediction of the Oxygen Permeation Flux through a Thin Ceramic Membrane from Powder Measurements 820

36.2.6 Conclusions 823

36.3 Measurement of Kinetics of Fast Reactions 823

36.3.1 Annular Reactor 824

36.3.2 Modeling of Annular Reactors 825

36.3.3 Case Study: Kinetics of High–Temperature Ammonia Oxidation in an Annular Reactor 827

36.3.4 TAP Reactor 830

36.3.5 Case Study: TAP Experiments for Ammonia Oxidation over LaCoO3 831

36.3.6 Conclusions 833

References 833

37 Perovskites as Oxygen Carrier–Transport Materials for Hydrogen and Carbon Monoxide Production by Chemical Looping Processes 839
Lori Nalbandian and Vassilis Zaspalis

37.1 Introduction 839

37.1.1 Chemical Looping Combustion 839

37.1.2 Oxygen Carriers 840

37.1.3 Chemical Looping Reforming 841

37.1.4 Chemical Looping Water Splitting and Chemical Looping Carbon Dioxide Splitting 842

37.1.5 Thermochemical Water or Carbon Dioxide Splitting 842

37.1.6 Chemical Looping in Dense Membrane Reactors 843

37.2 Perovskites for H2 and CO Production by Chemical Looping Processes 844

37.2.1 Powdered Perovskites: Chemical Looping Processes 845

37.2.1.1 Reduction by an Oxidizable Compound 845

37.2.1.2 Reduction by Solar Radiation 849

37.2.2 Perovskites as Dense Membranes 850

37.2.3 Perovskites Used as Supports 856

37.3 Conclusions 857

References 857

38 Perovskites and Related Mixed Oxides for SOFC Applications 863
Steven S.C. Chuang and Long Zhang

38.1 Introduction 863

38.2 Fuel Cells 864

38.3 Perovskites 870

38.3.1 Perovskite as a Cathode Material 870

38.3.2 Low–Temperature Cathodes 873

38.4 Anode Materials 874

38.5 Summary and Future R&D 875

References 876

39 Perovskite Membranes for CO2 Capture: Current Trends and Future Prospects 881
Marc Pera–Titus and Anne Giroir–Fendler

39.1 Introduction 881

39.2 Pre–, Post–, and Oxy–combustion CO2 Capture: High– versus Low–Temperature Membrane Technologies 882

39.2.1 Low–Temperature Membranes: Porous Inorganic Membranes 883

39.2.2 High–Temperature Membranes: Mixed Ionic Electronic Conducting Membranes Based on Perovskites 885

39.3 R&D Membrane Concepts for High–Temperature CO2 Capture 889

39.3.1 Perovskite Membranes for O2 Separation 889

39.3.1.1 O2 Separation and Combustion 889

39.3.1.2 Gasification Systems Combined with Combustion 890

39.3.2 Perovskite Membranes for H2 Separation and Steam Dosing 891

39.3.3 Perovskite–Containing Membranes for CO2 Separation 892

39.4 Recent Membrane Developments for CO2 Capture 893

39.4.1 General Criteria for Membrane Design 893

39.4.2 Perovskite Membranes for Selective O2 Permeation 895

39.4.2.1 Co–Containing Perovskites 895

39.4.2.2 Co–Free Perovskites 901

39.4.2.3 Dual–Phase Membranes 902

39.4.3 Perovskite Membranes for Selective H2 Permeation 904

39.4.3.1 Ce–Containing Perovskites (Cerates) 904

39.4.3.2 Dual–Phase Metal Cerates: Cermets 905

39.4.3.3 Ce–Free Formulations 909

39.4.4 Molten Carbonate/Perovskite Membranes for Selective CO2 Permeation 910

39.5 Conclusions and Perspectives 913

Glossary 915

Greek Symbols 915

Subscripts 915

Acronyms 915

References 916

Index 929

Pascal Granger is Head of the Catalysis and Solid State Chemistry Department at the University of Lille, France. He obtained his PhD in Applied Chemistry from the University of Poitiers, France, and did postdoctoral research at the University of Lille before he became Full Professor there in 2003. Pascal Granger investigates the mechanisms and kinetics of heterogeneous catalytic reactions and is involved in the development of spectroscopic characterizations of DeNOx and DeN2O abatement processes. He is author and co-author of 85 publications in refereed international journals and of one book.

Vasile I. Parvulescu is Director of the Department of Organic Chemistry, Biochemistry and Catalysis at the University of Bucharest, Romania. He received his PhD in Chemistry from the University of Bucharest for a work on the selectivity of bi- and multi-metal catalysts in hydrogenation of aromatic hydrocarbons. After several years as senior researcher at the Institute for Non-Ferrous and Rare Metals in Bucharest, he rejoined the University of Bucharest in 1992 where he became full professor in 1999. His current interest concerns the study of heterogeneous catalysts for green and fine chemistry as well as for environmental protection. He authored more than 240 papers, 25 patents and 4 books.

Serge Kaliaguine is Professor in the Department of Chemical Engineering at the University of Laval in Quebec, Canada. He has developed a strong expertise in the fields of zeolites and mesoporous molecular sieves and perovskites and other mixed oxides for which he developed a novel reactive grinding technology for industrial applications. He is also involved in the preparation of composite proton conducting membranes. Serge Kaliaguine is co-author of more than 300 peer-reviewed publications in the field of applied chemistry, chemical engineering and polymer chemistry.

Wilfrid Prellier is Senior CNRS Researcher in the CRISMAT Laboratory at the University of Caen, Fran

Date de parution :

Ouvrage de 1056 p.

17.5x24.9 cm

Disponible chez l'éditeur (délai d'approvisionnement : 12 jours).

Prix indicatif 407,00 €

Ajouter au panier