Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/modern-nuclear-chemistry-2nd-ed/loveland/descriptif_3226533
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3226533

Modern Nuclear Chemistry (2nd Ed.)

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Modern Nuclear Chemistry
Written by established experts in the field, this book features in-depth discussions of proven scientific principles, current trends, and applications of nuclear chemistry to the sciences and engineering.

?    Provides up-to-date coverage of the latest research and examines the theoretical and practical aspects of nuclear and radiochemistry
?    Presents the basic physical principles of nuclear and radiochemistry in a succinct fashion, requiring no basic knowledge of quantum mechanics
?    Adds discussion of math tools and simulations to demonstrate various phenomena, new chapters on Nuclear Medicine, Nuclear Forensics and Particle Physics, and updates to all other chapters
?    Includes additional in-chapter sample problems with solutions to help students
?    Reviews of 1st edition: "... an authoritative, comprehensive but succinct, state-of-the-art textbook ...." (The Chemical Educator) and "...an excellent resource for libraries and laboratories supporting programs requiring familiarity with nuclear processes ..." (CHOICE)

Preface to the Second Edition xv

Preface to the First Edition xvii

1 Introductory Concepts 1

1.1 Introduction 1

1.2 The Excitement and Relevance of Nuclear Chemistry 2

1.3 The Atom 3

1.4 Atomic Processes 4

1.4.1 Ionization 5

1.4.2 X-Ray Emission 5

1.5 The Nucleus: Nomenclature 7

1.6 Properties of the Nucleus 8

1.7 Survey of Nuclear Decay Types 9

1.8 Modern Physical Concepts Needed in Nuclear Chemistry 12

1.8.1 Elementary Mechanics 13

1.8.2 Relativistic Mechanics 14

1.8.3 de Broglie Wavelength: Wave–Particle Duality 16

1.8.4 Heisenberg Uncertainty Principle 18

1.8.5 Units and Conversion Factors 19

Problems 19

Bibliography 21

2 Nuclear Properties 25

2.1 Nuclear Masses 25

2.2 Terminology 28

2.3 Binding Energy Per Nucleon 29

2.4 Separation Energy Systematics 31

2.5 Abundance Systematics 32

2.6 Semiempirical Mass Equation 33

2.7 Nuclear Sizes and Shapes 39

2.8 Quantum Mechanical Properties 43

2.8.1 Nuclear Angular Momentum 43

2.9 Electric and Magnetic Moments 45

2.9.1 Magnetic Dipole Moment 45

2.9.2 Electric Quadrupole Moment 48

Problems 51

Bibliography 55

3 Radioactive Decay Kinetics 57

3.1 Basic Decay Equations 57

3.2 Mixture of Two Independently Decaying Radionuclides 65

3.3 Radioactive Decay Equilibrium 66

3.4 Branching Decay 76

3.5 Radiation Dosage 77

3.6 Natural Radioactivity 79

3.6.1 General Information 79

3.6.2 Primordial Nuclei and the Uranium Decay Series 79

3.6.3 Cosmogenic Nuclei 81

3.6.4 Anthropogenic Nuclei 83

3.6.5 Health Effects of Natural Radiation 83

3.7 Radionuclide Dating 84

Problems 90

Bibliography 92

4 Nuclear Medicine 93

4.1 Introduction 93

4.2 Radiopharmaceuticals 94

4.3 Imaging 96

4.4 99Tcm 98

4.5 PET 101

4.6 Other Imaging Techniques 103

4.7 Some Random Observations about the Physics of Imaging 104

4.8 Therapy 108

Problems 110

Bibliography 112

5 Particle Physics and the Nuclear Force 113

5.1 Particle Physics 113

5.2 The Nuclear Force 117

5.3 Characteristics of the Strong Force 119

5.4 Charge Independence of Nuclear Forces 120

Problems 124

Bibliography 124

6 Nuclear Structure 125

6.1 Introduction 125

6.2 Nuclear Potentials 127

6.3 Schematic Shell Model 129

6.4 Independent Particle Model 141

6.5 Collective Model 143

6.6 Nilsson Model 149

6.7 Fermi Gas Model 152

Problems 161

Bibliography 164

7 𝛂-Decay 167

7.1 Introduction 167

7.2 Energetics of α Decay 169

7.3 Theory of α Decay 173

7.4 Hindrance Factors 182

7.5 Heavy Particle Radioactivity 183

7.6 Proton Radioactivity 185

Problems 186

Bibliography 188

8 𝛃-Decay 191

8.1 Introduction 191

8.2 Neutrino Hypothesis 192

8.3 Derivation of the Spectral Shape 196

8.4 Kurie Plots 199

8.5 β Decay Rate Constant 200

8.6 Electron Capture Decay 206

8.7 Parity Nonconservation 207

8.8 Neutrinos Again 208

8.9 β-Delayed Radioactivities 209

8.10 Double β Decay 211

Problems 213

Bibliography 214

9 𝛄-Ray Decay 217

9.1 Introduction 217

9.2 Energetics of γ-Ray Decay 218

9.3 Classification of Decay Types 220

9.4 Electromagnetic Transition Rates 223

9.5 Internal Conversion 229

9.6 Angular Correlations 232

9.7 Mössbauer Effect 238

Problems 244

Bibliography 245

10 Nuclear Reactions 247

10.1 Introduction 247

10.2 Energetics of Nuclear Reactions 248

10.3 Reaction Types and Mechanisms 252

10.4 Nuclear Reaction Cross Sections 253

10.5 Reaction Observables 264

10.6 Rutherford Scattering 264

10.7 Elastic (Diffractive) Scattering 268

10.8 Aside on the Optical Model 270

10.9 Direct Reactions 271

10.10 Compound Nuclear Reactions 273

10.11 Photonuclear Reactions 279

10.12 Heavy-Ion Reactions 281

10.12.1 Coulomb Excitation 284

10.12.2 Elastic Scattering 284

10.12.3 Fusion Reactions 284

10.12.4 Incomplete Fusion 288

10.12.5 Deep-Inelastic Scattering 289

10.13 High-Energy Nuclear Reactions 291

10.13.1 Spallation/Fragmentation Reactions 291

10.13.2 Reactions Induced by Radioactive Projectiles 295

10.13.3 Multifragmentation 296

10.13.4 Quark–Gluon Plasma 298

Problems 298

Bibliography 302

11 Fission 305

11.1 Introduction 305

11.2 Probability of Fission 308

11.2.1 Liquid Drop Model 308

11.2.2 Shell Corrections 310

11.2.3 Spontaneous Fission 312

11.2.4 Spontaneously Fissioning Isomers 315

11.2.5 The Transition Nucleus 316

11.3 Dynamical Properties of Fission Fragments 323

11.4 Fission Product Distributions 327

11.4.1 Total Kinetic Energy (TKE) Release 327

11.4.2 Fission Product Mass Distribution 327

11.4.3 Fission Product Charge Distributions 330

11.5 Excitation Energy of Fission Fragments 334

Problems 337

Bibliography 338

12 Nuclear Astrophysics 339

12.1 Introduction 339

12.2 Elemental and Isotopic Abundances 340

12.3 Primordial Nucleosynthesis 343

12.3.1 Stellar Evolution 347

12.4 Thermonuclear Reaction Rates 351

12.5 Stellar Nucleosynthesis 353

12.5.1 Introduction 353

12.5.2 Hydrogen Burning 353

12.5.3 Helium Burning 357

12.5.4 Synthesis of Nuclei with A < 60 359

12.5.5 Synthesis of Nuclei with A > 60 360

12.6 Solar Neutrino Problem 366

12.6.1 Introduction 366

12.6.2 Expected Solar Neutrino Sources, Energies, and Fluxes 367

12.6.3 Detection of Solar Neutrinos 369

12.6.4 The Solar Neutrino Problem 371

12.6.5 Solution to the Problem: Neutrino Oscillations 371

12.7 Synthesis of Li, Be, and B 373

Problems 375

Bibliography 376

13 Reactors and Accelerators 379

13.1 Introduction 379

13.2 Nuclear Reactors 380

13.2.1 Neutron-Induced Reaction 380

13.2.2 Neutron-Induced Fission 383

13.2.3 Neutron Inventory 384

13.2.4 Light Water Reactors 386

13.2.5 The Oklo Phenomenon 391

13.3 Neutron Sources 392

13.4 Neutron Generators 392

13.5 Accelerators 393

13.5.1 Ion Sources 394

13.5.2 Electrostatic Machines 396

13.5.3 Linear Accelerators 400

13.5.4 Cyclotrons, Synchrotrons, and Rings 403

13.6 Charged-Particle Beam Transport and Analysis 410

13.7 Radioactive Ion Beams 415

13.8 Nuclear Weapons 421

Problems 425

Bibliography 427

14 The Transuranium Elements 429

14.1 Introduction 429

14.2 Limits of Stability 429

14.3 Element Synthesis 434

14.4 History of Transuranium Element Discovery 437

14.5 Superheavy Elements 449

14.6 Chemistry of the Transuranium Elements 453

14.7 Environmental Chemistry of the Transuranium Elements 461

Problems 468

Bibliography 469

15 Nuclear Reactor Chemistry 473

15.1 Introduction 473

15.2 Fission Product Chemistry 475

15.3 Radiochemistry of Uranium 478

15.3.1 Uranium Isotopes 478

15.3.2 Metallic Uranium 478

15.3.3 Uranium Compounds 478

15.3.4 Uranium Solution Chemistry 479

15.4 The Nuclear Fuel Cycle: The Front End 480

15.4.1 Mining and Milling 481

15.4.2 Refining and Chemical Conversion 483

15.4.3 Isotopic Enhancement 484

15.4.4 Fuel Fabrication 487

15.5 The Nuclear Fuel Cycle: The Back End 488

15.5.1 Properties of Spent Fuel 488

15.5.2 Fuel Reprocessing 490

15.6 Radioactive Waste Disposal 493

15.6.1 Classifications of Radioactive Waste 493

15.6.2 Waste Amounts and Associated Hazards 494

15.6.3 Storage and Disposal of Nuclear Waste 496

15.6.4 Spent Nuclear Fuel 497

15.6.5 HLW 498

15.6.6 Transuranic Waste 499

15.6.7 Low-Level Waste 499

15.6.8 Mill Tailings 500

15.6.9 Partitioning of Waste 500

15.6.10 Transmutation of Waste 501

15.7 Chemistry of Operating Reactors 504

15.7.1 Radiation Chemistry of Coolants 504

15.7.2 Corrosion 505

15.7.3 Coolant Activities 505

Problems 506

Bibliography 507

16 Interaction of Radiation with Matter 509

16.1 Introduction 509

16.2 Heavy Charged Particles 512

16.2.1 Stopping Power 512

16.2.2 Range 521

16.3 Electrons 526

16.4 Electromagnetic Radiation 532

16.4.1 Photoelectric Effect 534

16.4.2 Compton Scattering 536

16.4.3 Pair Production 537

16.5 Neutrons 540

16.6 Radiation Exposure and Dosimetry 544

Problems 548

Bibliography 550

17 Radiation Detectors 553

17.1 Introduction 553

17.1.1 Gas Ionization 554

17.1.2 Ionization in a Solid (Semiconductor Detectors) 554

17.1.3 Solid Scintillators 555

17.1.4 Liquid Scintillators 555

17.1.5 Nuclear Emulsions 555

17.2 Detectors Based on Collecting Ionization 556

17.2.1 Gas Ionization Detectors 557

17.2.2 Semiconductor Detectors (Solid State Ionization Chambers) 567

17.3 Scintillation Detectors 578

17.4 Nuclear Track Detectors 584

17.5 Neutron Detectors 585

17.6 Nuclear Electronics and Data Collection 587

17.7 Nuclear Statistics 589

17.7.1 Distributions of Data and Uncertainty 591

17.7.2 Rejection of Abnormal Data 597

17.7.3 Setting Upper LimitsWhen No Counts Are Observed 598

Problems 599

Bibliography 600

18 Nuclear Analytical Methods 603

18.1 Introduction 603

18.2 Activation Analysis 603

18.2.1 Basic Description of the Method 603

18.2.2 Advantages and Disadvantages of Activation Analysis 605

18.2.3 Practical Considerations in Activation Analysis 607

18.2.4 Applications of Activation Analysis 611

18.3 PIXE 612

18.4 Rutherford Backscattering 615

18.5 Accelerator Mass Spectrometry (AMS) 619

18.6 Other Mass Spectrometric Techniques 620

Problems 621

Bibliography 623

19 Radiochemical Techniques 625

19.1 Introduction 625

19.2 Unique Aspects of Radiochemistry 626

19.3 Availability of Radioactive Material 630

19.4 Targetry 632

19.5 Measuring Beam Intensity and Fluxes 637

19.6 Recoils, Evaporation Residues, and Heavy Residues 639

19.7 Radiochemical Separation Techniques 644

19.7.1 Precipitation 644

19.7.2 Solvent Extraction 645

19.7.3 Ion Exchange 648

19.7.4 Extraction Chromatography 650

19.7.5 Rapid Radiochemical Separations 652

19.8 Low-Level Measurement Techniques 653

19.8.1 Blanks 654

19.8.2 Low-Level Counting: General Principles 654

19.8.3 Low-Level Counting: Details 655

19.8.4 Limits of Detection 658

Problems 659

Bibliography 660

20 Nuclear Forensics 663

20.1 Introduction 663

20.1.1 Basic Principles of Forensic Analysis 666

20.2 Chronometry 670

20.3 Nuclear Weapons and Their Debris 672

20.3.1 RDD or Dirty Bombs 672

20.3.2 Nuclear Explosions 674

20.4 Deducing Sources and Routes of Transmission 678

Problems 680

Bibliography 681

Appendix A: Fundamental Constants and Conversion Factors 683

Appendix B: NuclearWallet Cards 687

Appendix C: Periodic Table of the Elements 711

Appendix D: Alphabetical List of the Elements 713

Appendix E: Elements of Quantum Mechanics 715

Index 737

WALTER D. LOVELAND, PhD, is a professor of chemistry at Oregon State University, USA.

DAVID J. MORRISSEY, PhD, is a professor of chemistry and associate director of the National Superconducting Cyclotron Laboratory at Michigan State University, USA.

GLENN T. SEABORG, PhD (deceased), was a professor of chemistry at the University of California, Berkeley, and cofounder and chairman of the Lawrence Hall of Science, USA. He is credited with discovering 10 new elements, including plutonium and one that now bears his name, seaborgium. In 1951, Dr. Seaborg and his colleague, Edwin McMillan, were awarded the Nobel Prize in Chemistry for research into transuranium elements.