Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/introduction-to-reticular-chemistry/descriptif_3947915
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3947915

Introduction to Reticular Chemistry Metal-Organic Frameworks and Covalent Organic Frameworks

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Introduction to Reticular Chemistry
A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials

Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications

Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry:

-Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials
-Discusses both real-life and future applications in various fields, such as clean energy and water adsorption
-Offers all graphic material on a companion website
-Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team.

Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.

About the Companion Website xvii

Foreword xix

Acknowledgment xxi

Introduction xxiii

Abbreviations xxvii

Part I Metal-Organic Frameworks 1

1 Emergence of Metal-Organic Frameworks 3

1.1 Introduction 3

1.2 Early Examples of Coordination Solids 3

1.3 Werner Complexes 4

1.4 Hofmann Clathrates 6

1.5 Coordination Networks 8

1.6 Coordination Networks with Charged Linkers 15

1.7 Introduction of Secondary Building Units and Permanent Porosity 16

1.8 Extending MOF Chemistry to 3D Structures 17

1.8.1 Targeted Synthesis of MOF-5 18

1.8.2 Structure of MOF-5 19

1.8.3 Stability of Framework Structures 20

1.8.4 Activation of MOF-5 20

1.8.5 Permanent Porosity of MOF-5 21

1.8.6 Architectural Stability of MOF-5 22

1.9 Summary 23

References 24

2 Determination and Design of Porosity 29

2.1 Introduction 29

2.2 Porosity in Crystalline Solids 29

2.3 Theory of Gas Adsorption 31

2.3.1 Terms and Definitions 31

2.3.2 Physisorption and Chemisorption 31

2.3.3 Gas Adsorption Isotherms 33

2.3.4 Models Describing Gas Adsorption in Porous Solids 35

2.3.4.1 Langmuir Model 37

2.3.4.2 Brunauer–Emmett–Teller (BET) Model 38

2.3.5 Gravimetric Versus Volumetric Uptake 40

2.4 Porosity in Metal-Organic Frameworks 40

2.4.1 Deliberate Design of Pore Metrics 40

2.4.2 Ultrahigh Surface Area 46

2.5 Summary 52

References 52

3 Building Units of MOFs 57

3.1 Introduction 57

3.2 Organic Linkers 57

3.2.1 Synthetic Methods for Linker Design 59

3.2.2 Linker Geometries 62

3.2.2.1 Two Points of Extension 62

3.2.2.2 Three Points of Extension 64

3.2.2.3 Four Points of Extension 64

3.2.2.4 Five Points of Extension 69

3.2.2.5 Six Points of Extension 69

3.2.2.6 Eight Points of Extension 69

3.3 Secondary Building Units 71

3.4 Synthetic Routes to Crystalline MOFs 74

3.4.1 Synthesis of MOFs from Divalent Metals 74

3.4.2 Synthesis of MOFs from Trivalent Metals 76

3.4.2.1 Trivalent Group 3 Elements 76

3.4.2.2 Trivalent Transition Metals 76

3.4.3 Synthesis of MOFs from Tetravalent Metals 77

3.5 Activation of MOFs 77

3.6 Summary 79

References 80

4 Binary Metal-Organic Frameworks 83

4.1 Introduction 83

4.2 MOFs Built from 3-, 4-, and 6-Connected SBUs 83

4.2.1 3-Connected (3-c) SBUs 83

4.2.2 4-Connected (4-c) SBUs 84

4.2.3 6-Connected (6-c) SBUs 90

4.3 MOFs Built from 7-, 8-, 10-, and 12-Connected SBUs 97

4.3.1 7-Connected (7-c) SBUs 97

4.3.2 8-Connected (8-c) SBUs 98

4.3.3 10-Connected (10-c) SBUs 103

4.3.4 12-Connected (12-c) SBUs 105

4.4 MOFs Built from Infinite Rod SBUs 112

4.5 Summary 114

References 114

5 Complexity and Heterogeneity in MOFs 121

5.1 Introduction 121

5.2 Complexity in Frameworks 123

5.2.1 Mixed-Metal MOFs 123

5.2.1.1 Linker De-symmetrization 123

5.2.1.2 Linkers with Chemically Distinct Binding Groups 123

5.2.2 Mixed-Linker MOFs 126

5.2.3 The TBU Approach 132

5.2.3.1 Linking TBUs Through Additional SBUs 133

5.2.3.2 Linking TBUs Through Organic Linkers 134

5.3 Heterogeneity in Frameworks 135

5.3.1 Multi-Linker MTV-MOFs 136

5.3.2 Multi-Metal MTV-MOFs 136

5.3.3 Disordered Vacancies 139

5.4 Summary 141

References 141

6 Functionalization of MOFs 145

6.1 Introduction 145

6.2 In situ Functionalization 146

6.2.1 Trapping of Molecules 146

6.2.2 Embedding of Nanoparticles in MOF Matrices 147

6.3 Pre-Synthetic Functionalization 149

6.4 Post-Synthetic Modification 149

6.4.1 Functionalization Involving Weak Interactions 150

6.4.1.1 Encapsulation of Guests 150

6.4.1.2 Coordinative Functionalization of Open Metal Site 151

6.4.1.3 Coordinative Functionalization of the Linker 151

6.4.2 PSM Involving Strong Interactions 153

6.4.2.1 Coordinative Functionalization of the SBUs by AIM 154

6.4.2.2 Post-Synthetic Ligand Exchange 154

6.4.2.3 Coordinative Alignment 156

6.4.2.4 Post-Synthetic Linker Exchange 156

6.4.2.5 Post-Synthetic Linker Installation 160

6.4.2.6 Introduction of Ordered Defects 163

6.4.2.7 Post-Synthetic Metal Ion Exchange 164

6.4.3 PSM Involving Covalent Interactions 165

6.4.3.1 Covalent PSM of Amino-Functionalized MOFs 166

6.4.3.2 Click Chemistry and Other Cycloadditions 168

6.4.4 Covalent PSM on Bridging Hydroxyl Groups 171

6.5 Analytical Methods 171

6.6 Summary 172

References 173

Part II Covalent Organic Frameworks 177

7 Historical Perspective on the Discovery of Covalent Organic Frameworks 179

7.1 Introduction 179

7.2 Lewis’ Concepts and the Covalent Bond 180

7.3 Development of Synthetic Organic Chemistry 182

7.4 Supramolecular Chemistry 183

7.5 Dynamic Covalent Chemistry 187

7.6 Covalent Organic Frameworks 189

7.7 Summary 192

References 193

8 Linkages in Covalent Organic Frameworks 197

8.1 Introduction 197

8.2 B–O Bond Forming Reactions 197

8.2.1 Mechanism of Boroxine, Boronate Ester, and Spiroborate Formation 197

8.2.2 Borosilicate COFs 198

8.2.3 Spiroborate COFs 200

8.3 Linkages Based on Schiff-Base Reactions 201

8.3.1 Imine Linkage 201

8.3.1.1 2D Imine COFs 201

8.3.1.2 3D Imine COFs 203

8.3.1.3 Stabilization of Imine COFs Through Hydrogen Bonding 205

8.3.1.4 Resonance Stabilization of Imine COFs 206

8.3.2 Hydrazone COFs 207

8.3.3 Squaraine COFs 209

8.3.4 β-Ketoenamine COFs 210

8.3.5 Phenazine COFs 211

8.3.6 Benzoxazole COFs 212

8.4 Imide Linkage 213

8.4.1 2D Imide COFs 214

8.4.2 3D Imide COFs 215

8.5 Triazine Linkage 216

8.6 Borazine Linkage 217

8.7 Acrylonitrile Linkage 218

8.8 Summary 220

References 221

9 Reticular Design of Covalent Organic Frameworks 225

9.1 Introduction 225

9.2 Linkers in COFs 227

9.3 2D COFs 227

9.3.1 hcb Topology COFs 229

9.3.2 sql Topology COFs 231

9.3.3 kgm Topology COFs 233

9.3.4 Formation of hxl Topology COFs 235

9.3.5 kgd Topology COFs 236

9.4 3D COFs 238

9.4.1 dia Topology COFs 238

9.4.2 ctn and bor Topology COFs 239

9.4.3 COFs with pts Topology 240

9.5 Summary 241

References 242

10 Functionalization of COFs 245

10.1 Introduction 245

10.2 In situ Modification 245

10.2.1 Embedding Nanoparticles in COFs 246

10.3 Pre-Synthetic Modification 247

10.3.1 Pre-Synthetic Metalation 248

10.3.2 Pre-Synthetic Covalent Functionalization 249

10.4 Post-Synthetic Modification 250

10.4.1 Post-Synthetic Trapping of Guests 250

10.4.1.1 Trapping of Functional Small Molecules 250

10.4.1.2 Post-Synthetic Trapping of Biomacromolecules and Drug Molecules 251

10.4.1.3 Post-Synthetic Trapping of Metal Nanoparticles 251

10.4.1.4 Post-Synthetic Trapping of Fullerenes 253

10.4.2 Post-Synthetic Metalation 253

10.4.2.1 Post-Synthetic Metalation of the Linkage 253

10.4.2.2 Post-Synthetic Metalation of the Linker 255

10.4.3 Post-Synthetic Covalent Functionalization 256

10.4.3.1 Post-Synthetic Click Reactions 256

10.4.3.2 Post-Synthetic Succinic Anhydride Ring Opening 259

10.4.3.3 Post-Synthetic Nitro Reduction and Aminolysis 260

10.4.3.4 Post-Synthetic Linker Exchange 261

10.4.3.5 Post-Synthetic Linkage Conversion 262

10.5 Summary 263

References 264

11 Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks 267

11.1 Introduction 267

11.2 Top–Down Approach 268

11.2.1 Sonication 268

11.2.2 Grinding 269

11.2.3 Chemical Exfoliation 269

11.3 Bottom–Up Approach 271

11.3.1 Mechanism of Crystallization of Boronate Ester COFs 271

11.3.1.1 Solution Growth on Substrates 273

11.3.1.2 Seeded Growth of Colloidal Nanocrystals 274

11.3.1.3 Thin Film Growth in Flow 276

11.3.1.4 Thin Film Formation by Vapor-Assisted Conversion 277

11.3.2 Mechanism of Imine COF Formation 277

11.3.2.1 Nanoparticles of Imine COFs 278

11.3.2.2 Thin Films of Imine COFs at the Liquid–Liquid Interface 280

11.4 Monolayer Formation of Boroxine and Imine COFs Under Ultrahigh Vacuum 281

11.5 Summary 281

References 282

Part III Applications of Metal-Organic Frameworks 285

12 The Applications of Reticular Framework Materials 287

References 288

13 The Basics of Gas Sorption and Separation in MOFs 295

13.1 Gas Adsorption 295

13.1.1 Excess and Total Uptake 295

13.1.2 Volumetric Versus Gravimetric Uptake 297

13.1.3 Working Capacity 297

13.1.4 System-Based Capacity 298

13.2 Gas Separation 299

13.2.1 Thermodynamic Separation 299

13.2.1.1 Calculation of Qst Using a Virial-Type Equation 300

13.2.1.2 Calculation of Qst Using the Langmuir–Freundlich Equation 300

13.2.2 Kinetic Separation 301

13.2.2.1 Diffusion Mechanisms 301

13.2.2.2 Influence of the Pore Shape 303

13.2.2.3 Separation by Size Exclusion 304

13.2.2.4 Separation Based on the Gate-Opening Effect 304

13.2.3 Selectivity 305

13.2.3.1 Calculation of the Selectivity from Single-Component Isotherms 306

13.2.3.2 Calculation of the Selectivity by Ideal Adsorbed Solution Theory 307

13.2.3.3 Experimental Methods 308

13.3 Stability of Porous Frameworks Under Application Conditions 309

13.4 Summary 310

References 310

14 CO2 Capture and Sequestration 313

14.1 Introduction 313

14.2 In Situ Characterization 315

14.2.1 X-ray and Neutron Diffraction 315

14.2.1.1 Characterization of Breathing MOFs 316

14.2.1.2 Characterization of Interactions with Lewis Bases 317

14.2.1.3 Characterization of Interactions with Open Metal Sites 317

14.2.2 Infrared Spectroscopy 318

14.2.3 Solid-State NMR Spectroscopy 320

14.3 MOFs for Post-combustion CO2 Capture 321

14.3.1 Influence of Open Metal Sites 321

14.3.2 Influence of Heteroatoms 322

14.3.2.1 Organic Diamines Appended to Open Metal Sites 322

14.3.2.2 Covalently Bound Amines 323

14.3.3 Interactions Originating from the SBU 323

14.3.4 Influence of Hydrophobicity 325

14.4 MOFs for Pre-combustion CO2 Capture 326

14.5 Regeneration and CO2 Release 327

14.5.1 Temperature Swing Adsorption 328

14.5.2 Vacuum and Pressure Swing Adsorption 328

14.6 Important MOFs for CO2 Capture 329

14.7 Summary 332

References 332

15 Hydrogen and Methane Storage in MOFs 339

15.1 Introduction 339

15.2 Hydrogen Storage in MOFs 340

15.2.1 Design of MOFs for Hydrogen Storage 341

15.2.1.1 Increasing the Accessible Surface Area 342

15.2.1.2 Increasing the Isosteric Heat of Adsorption 344

15.2.1.3 Use of Lightweight Elements 348

15.2.2 Important MOFs for Hydrogen Storage 349

15.3 Methane Storage in MOFs 349

15.3.1 Optimizing MOFs for Methane Storage 352

15.3.1.1 Optimization of the Pore Shape and Metrics 353

15.3.1.2 Introduction of Polar Adsorption Sites 357

15.3.2 Important MOFs for Methane Storage 359

15.4 Summary 359

References 359

16 Liquid- and Gas-Phase Separation in MOFs 365

16.1 Introduction 365

16.2 Separation of Hydrocarbons 366

16.2.1 C1–C5 Separation 367

16.2.2 Separation of Light Olefins and Paraffins 370

16.2.2.1 Thermodynamic Separation of Olefin/Paraffin Mixtures 371

16.2.2.2 Kinetic Separation of Olefin/Paraffin Mixtures 372

16.2.2.3 Separation of Olefin/Paraffin Mixtures Utilizing the Gate-Opening Effect 375

16.2.2.4 Separation of Olefin/Paraffin Mixtures by Molecular Sieving 375

16.2.3 Separation of Aromatic C8 Isomers 376

16.2.4 Mixed-Matrix Membranes 379

16.3 Separation in Liquids 382

16.3.1 Adsorption of Bioactive Molecules fromWater 382

16.3.1.1 Toxicity of MOFs 382

16.3.1.2 Selective Adsorption of Drug Molecules fromWater 383

16.3.1.3 Selective Adsorption of Biomolecules fromWater 385

16.3.2 Adsorptive Purification of Fuels 385

16.3.2.1 Aromatic N-Heterocyclic Compounds 385

16.3.2.2 Adsorptive Removal of Aromatic N-Heterocycles 385

16.4 Summary 386

References 387

17 Water Sorption Applications of MOFs 395

17.1 Introduction 395

17.2 Hydrolytic Stability of MOFs 395

17.2.1 Experimental Assessment of the Hydrolytic Stability 396

17.2.2 Degradation Mechanisms 396

17.2.3 Thermodynamic Stability 398

17.2.3.1 Strength of the Metal–Linker Bond 398

17.2.3.2 Reactivity of Metals TowardWater 399

17.2.4 Kinetic Inertness 400

17.2.4.1 Steric Shielding 401

17.2.4.2 Hydrophobicity 403

17.2.4.3 Electronic Configuration of the Metal Center 403

17.3 Water Adsorption in MOFs 404

17.3.1 Water Adsorption Isotherms 404

17.3.2 Mechanisms ofWater Adsorption in MOFs 405

17.3.2.1 Chemisorption on Open Metal Sites 405

17.3.2.2 Reversible Cluster Formation 407

17.3.2.3 Capillary Condensation 409

17.4 Tuning the Adsorption Properties of MOFs by Introduction of Functional Groups 411

17.5 Adsorption-Driven Heat Pumps 412

17.5.1 Working Principles of Adsorption-Driven Heat Pumps 412

17.5.2 Thermodynamics of Adsorption-Driven Heat Pumps 413

17.6 Water Harvesting from Air 415

17.6.1 Physical Background onWater Harvesting 416

17.6.2 Down-selection of MOFs forWater Harvesting 418

17.7 Design of MOFs with TailoredWater Adsorption Properties 420

17.7.1 Influence of the Linker Design 420

17.7.2 Influence of the SBU 420

17.7.3 Influence of the Pore Size and Dimensionality of the Pore System 421

17.7.4 Influence of Defects 421

17.8 Summary 422

References 423

Part IV Special Topics 429

18 Topology 431

18.1 Introduction 431

18.2 Graphs, Symmetry, and Topology 431

18.2.1 Graphs and Nets 431

18.2.2 Deconstruction of Crystal Structures into Their Underlying Nets 433

18.2.3 Embeddings of Net Topologies 435

18.2.4 The Influence of Local Symmetry 435

18.2.5 Vertex Symbols 436

18.2.6 Tilings and Face Symbols 437

18.3 Nomenclature 439

18.3.1 Augmented Nets 439

18.3.2 Binary Nets 440

18.3.3 Dual Nets 441

18.3.4 Interpenetrated/Catenated Nets 441

18.3.5 Cross-Linked Nets 442

18.3.6 Weaving and Interlocking Nets 443

18.4 The Reticular Chemistry Structure Resource (RCSR) Database 444

18.5 Important 3-Periodic Nets 445

18.6 Important 2-Periodic Nets 447

18.7 Important 0-Periodic Nets/Polyhedra 449

18.8 Summary 451

References 451

19 Metal-Organic Polyhedra and Covalent Organic Polyhedra 453

19.1 Introduction 453

19.2 General Considerations for the Design of MOPs and COPs 453

19.3 MOPs and COPs Based on the Tetrahedron 454

19.4 MOPs and COPs Based on the Octahedron 456

19.5 MOPs and COPs Based on Cubes and Heterocubes 457

19.6 MOPs Based on the Cuboctahedron 459

19.7 Summary 461

References 461

20 Zeolitic Imidazolate Frameworks 463

20.1 Introduction 463

20.2 Zeolitic Framework Structures 465

20.2.1 Zeolite-Like Metal-Organic Frameworks (Z-MOFs) 465

20.2.2 Zeolitic Imidazolate Frameworks (ZIFs) 467

20.3 Synthesis of ZIFs 468

20.4 Prominent ZIF Structures 469

20.5 Design of ZIFs 471

20.5.1 The Steric Index 𝛿 as a Design Tool 472

20.5.1.1 Principle I: Control over the Maximum Pore Opening 473

20.5.1.2 Principle II: Control over the Maximum Cage Size 473

20.5.1.3 Principle III: Control over the Structural Tunability 474

20.5.2 Functionalization of ZIFs 475

20.6 Summary 476

References 477

21 Dynamic Frameworks 481

21.1 Introduction 481

21.2 Flexibility in Synchronized Dynamics 482

21.2.1 Synchronized Global Dynamics 482

21.2.1.1 Breathing in MOFs Built from Rod SBUs 483

21.2.1.2 Breathing in MOFs Built from Discrete SBUs 484

21.2.1.3 Flexibility Through Distorted Organic Linkers 487

21.2.2 Synchronized Local Dynamics 487

21.3 Independent Dynamics in Frameworks 490

21.3.1 Independent Local Dynamics 490

21.3.2 Independent Global Dynamics 492

21.4 Summary 494

References 494

Index 497

Omar M. Yaghi is the James and Neeltje Tretter Chair Professor of Chemistry at University of California, Berkeley, and a Senior Faculty Scientist at Lawrence Berkeley National Laboratory, USA.

Markus J. Kalmutzki is a principal scientist at Parr Instrument GmbH in Frankfurt, Germany. Before he was a DFG-postdoctoral fellow in the group of Omar M. Yaghi at the Universtity of California, Berkeley.

Christian S. Diercks is currently pursuing his Ph.D. in the group of Omar M. Yaghi at the University of California, Berkeley.

Date de parution :

Ouvrage de 552 p.

18x24.9 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

149,17 €

Ajouter au panier