Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/growth-and-form-of-self-organized-branched-crystal-pattern-in-nonlinear-chemical-system/descriptif_3977721
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3977721

Growth and Form of Self-organized Branched Crystal Pattern in Nonlinear Chemical System, 1st ed. 2016 SpringerBriefs in Molecular Science Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Growth and Form of Self-organized Branched Crystal Pattern in Nonlinear Chemical System

The book introduces the oscillatory reaction and pattern formation in the Belousov-Zhabotinsky (BZ) reaction that became model for investigating a wide range of intriguing pattern formations in chemical systems. So many modifications in classic version of BZ reaction have been carried out in various experimental conditions that demonstrate rich varieties of temporal oscillations and spatio-temporal patterns in non- equilibrium conditions. Mixed-mode versions of BZ reactions, which comprise a pair of organic substrates or dual metal catalysts, have displayed very complex oscillating behaviours and novel space-time patterns during reaction processes. These characteristic spatio-temporal properties of BZ reactions have attracted increasing attention of the scientific community in recent years because of its comparable periodic structures in electrochemical systems, polymerization processes, and non-equilibrium crystallization phenomena. Instead, non-equilibrium crystallization phenomena which lead to development of novel crystal morphologies in constraint of thermodynamic equilibrium conditions have been investigated and are said to be stationary periodic structures. Efforts have continued to analyze insight mechanisms and roles of reaction-diffusion mechanism and self-organization in the growth of such periodic crystal patterns. In this book, non-equilibrium crystallization phenomena, leading to growth of some novel crystal patterns in dual organic substrate modes of oscillatory BZ reactions have been discussed. Efforts have been made to find out experimental parameters where transitions of the spherulitic crystal patterns take place. The book provides the scientific community and entrepreneurs with a thorough understanding and knowledge of the growth and form of branched crystal pattern in reaction-diffusion system and their morphological transition. 

Introduction.- Growth and Form of Diffusion-limited-Aggregation Crystal Pattern.- Growth and Form of Spherulitic Crystal Pattern.- Summary of the Research Work.- Future Prospects.- Reference.

Rohit Srivastava was born in Pratapgarh in the year 1986. He got his B.Sc. and M.Sc. degrees from Dr. Ram Manohar Lohia Avadh University, Faizabad, India in 2005 and 2008, respectively. He received Master of Philosophy (M.Phil.) in Chemistry from Dr. Bhim Rao Ambedkar University Agra, India in 2010 and after that he worked as a project fellow on UGC major research project at Motilal Nehru National Institute of Technology, Allahabad, India. He obtained his Ph.D. from Birla Institute of Technology, Mesra, Ranchi, India, in August 2015, where he investigated “Self-organization and growth of nanostructured branched crystal pattern in Belousov-Zhabotinsky type chemical reactions”. He is currently working as Post-doctoral fellow in Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore. He has published more than 15 research papers in high impact international journal, one book chapter and one book. He has received awards like Dr. DS Kothari Post-doc fellowship of UGC, Govt. of India, Institute Post-doctoral Fellowship from IIT Bombay and Institute fellowship (JRF) from BIT Mesra, Ranchi, India. He is reviewer of more than 5 international journals. His current research areas are polymer based functional nanomaterial’s for biomedical applications, self-assembly, oscillatory chemical reactions, pattern formation in reaction diffusion system and electrospun based nanofiber for biosensor applications.

Narendra Yadav received PhD Degree in the subject of Chemical Science from Birla Institute of Technology (BIT), Mesra, Ranchi, in 2013. Presently, he is working as Research Scientist in the Department of Space Engineering & Rocketry, BIT Mesra, since July 2010. He has been involved in research work for the Growth of Novel Crystal Patterns Mediated with Non-Equilibrium Crystallization and Oscillatory Chemical Reactions. Dr. Yadav is also associated with various R&D activities in the area of high energy materials (HEM

oscillatory reaction and pattern formation in the Belousov-Zhabotinsky (BZ) reaction

Provide the scientific community and

entrepreneurs with a thorough understanding and knowledge of the growth and

form of branched crystal pattern in reaction diffusion system and their

morphological transition

Demonstrates rich varieties of temporal oscillations and spatio-temporal patterns in non- equilibrium conditions

Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 65 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 52,74 €

Ajouter au panier