Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/chimie/energy-transfer-processes-in-polynuclear-lanthanide-complexes/descriptif_4222821
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4222821

Energy Transfer Processes in Polynuclear Lanthanide Complexes, 1st ed. 2019 Springer Theses Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Energy Transfer Processes in Polynuclear Lanthanide Complexes

This book describes the luminescence mechanism of polynuclear lanthanide complexes, focusing on energy transfer processes using a combination of experimental and theoretical approaches.

Lanthanide complexes show intense luminescence from the lanthanide ion through sensitization by the organic ligands. The high chromaticity of the emission and the long lifetimes of the complexes are particularly attractive for applications such as organic light-emitting diodes and bioprobes. Polynuclear lanthanide complexes (coordination polymers and clusters) have attracted considerable interest for functionalization by energy transfer between lanthanide ions. At the same time, such extra processes complicate the luminescence mechanism, hindering the rational design of functional polynuclear lanthanide complexes.

Firstly, the book explains the principle of the theoretical methods, and then describes the concentration-quenching mechanism in coordination polymers. It also examines the effect of intrinsic spin?orbit coupling arising from lanthanide ions on the ligand-to-lanthanide energy transfer efficiency and the mechanism of back energy transfer (the opposite of sensitizing energy transfer) in lanthanide clusters. This sets the stage for the final topic: the suppression of back energy transfer by energy transfer between lanthanide ions in lanthanide clusters, which is of critical importance, showing that the lanthanide clusters can be considered a new generation of functional and efficient luminescent material and could also provide a breakthrough in lanthanide photophysics.

General Introduction.- Theory.- Concentration Quenching in Ytterbium Coordination Polymers.- Spin-orbit Coupling and Energy Transfer in Nonanuclear Lanthanide Clusters.- Back Energy Transfer in Terbium Clusters.- Suppression of Back Energy Transfer by Energy Transfer between Terbium Ions.- Summary and Outlook.- Acknowledgements.

Nominated as an outstanding PhD thesis by Hokkaido University

Provides a detailed explanation of the theoretical methods employed for this work

Includes the code (script) to run the theoretical calculations

Date de parution :

Ouvrage de 140 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier