Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/zno-thin-film-transistors-for-cost-efficient-flexible-electronics/descriptif_3846999
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3846999

ZnO Thin-Film Transistors for Cost-Efficient Flexible Electronics, 1st ed. 2018

Langue : Anglais

Auteurs :

Couverture de l’ouvrage ZnO Thin-Film Transistors for Cost-Efficient Flexible Electronics

This book describes the integration, characterization and analysis of cost-efficient thin-film transistors (TFTs), applying zinc oxide as active semiconductors.  The authors discuss soluble gate dielectrics, ZnO precursors, and dispersions containing nanostructures of the material, while different transistor configurations are analyzed with respect to their integration, compatibility, and device performance.  Additionally, simple circuits (inverters and ring oscillators) and a complementary design employing (in)organic semiconducting materials are presented and discussed.  Readers will benefit from concise information on cost-efficient materials and processes, applied in flexible and transparent electronic technology, such as the use of solution-based materials and dispersion containing nanostructures, as well as discussion of the physical fundamentals responsible for the operation of the thin-film transistors and the non-idealities of the device.

Chapter 1.Introduction.- Chapter 2.Fundamentals.- Chapter 3.Integration.- Chapter 4. Zinc Oxide Transistors.- Chapter 5.Electronic Circuits.- Chapter 6.Improvements.- Chapter 7.Conclusion and Future Perspectives.

Fábio Fedrizzi Vidor received in 2011 the B.Sc. degree in Electrical Engineering and in 2012 the M.Sc. degree in Microelectronics, both from the Federal University of Rio Grande do Sul (UFRGS), Brazil. In 2017, he received the Dr.-Ing. degree in Electrical Engineering from the Paderborn University, Germany. He is currently a postdoctoral researcher at the Federal University of Rio Grande do Sul (UFRGS), Brazil. In 2009, he participated in the micro and nanoelectronic cooperation program at the State University of New York at Buffalo (SUNY), USA. In 2010 and 2011, he worked in the Prototyping and Testing Laboratory at UFRGS (LAPROT-UFRGS), developing transistor characterization methods and working at the performance enhancement of ZnO transistors in cooperation with the Paderborn University, Germany. In 2012, as a research assistant in the Post-Graduate Program on Microelectronic (PGMICRO-UFRGS), he worked on ZnO TFT reliability. From 2013 to 2017, he worked as a research assistant at the Paderborn University in the field of complementary TFTs with (in)organic semiconductors. His current research interests include fabrication, characterization, modeling and reliability of ZnO based and complementary TFTs and flexible electronics..

Gilson I. Wirth received the B.S.E.E and M.Sc. degrees from the Universidade Federal do Rio Grande do Sul, Brazil, in 1990 and 1994, respectively. In 1999 he received the Dr.-Ing. degree in Electrical Engineering from the University of Dortmund, Dortmund, Germany. He is currently a professor at the Electrical Engineering Department at the Universidade Federal do Rio Grande do Sul - UFRGS (since January 2007) , where he was the head of graduate and undergraduate courses. From July 2002 to December 2006 he was professor and head of the Computer Engineering Department, Universidade Estadual do Rio Grande do Sul (UERGS). His research work is focused on reliability and yield of MOS devices and circuits, including low-frequency noise,bi

Discusses flexible electronic technology, including its state-of-the-art, theory, modeling, device integration and electrical characterization Covers physical fundamentals responsible for the operation of the thin-film transistors and the non-idealities of the device Describes in detail solution-based and low temperature processes Explains the use of cost-efficient materials and processes, as the use of spray-coating technique for the deposition of the ZnO nanoparticles dispersion Includes analysis of simple circuits and development of a complementary design using (in)organic semiconducting materials

Date de parution :

Ouvrage de 179 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 179 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier