Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/vehicle-suspension-systems-and-electromagnetic-dampers/descriptif_3964947
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3964947

Vehicle Suspension Systems and Electromagnetic Dampers, Softcover reprint of the original 1st ed. 2018 Springer Tracts in Mechanical Engineering Series

Langue : Anglais
Couverture de l’ouvrage Vehicle Suspension Systems and Electromagnetic Dampers

 This book describes the development of a new analytical, full-vehicle model with nine degrees of freedom, which uses the new modified skyhook strategy (SKDT) to control the full-vehicle vibration problem. The book addresses the incorporation of road bank angle to create a zero steady-state torque requirement when designing the direct tilt control and the dynamic model of the full car model. It also highlights the potential of the SKDT suspension system to improve cornering performance and paves the way for future work on the vehicle?s integrated chassis control system. Active tilting technology to improve vehicle cornering is the focus of numerous ongoing research projects, but these don?t consider the effect of road bank angle in the control system design or in the dynamic model of the tilting standard passenger vehicles. The non-incorporation of road bank angle creates a non-zero steady state torque requirement.

Introduction.- Literature review.- Vehicle suspension system.- Design of semi-active suspension system.- Full car model cornering performance.- Simulation of full car model.- Experimental analysis of full car model.- Conclusions and recommendations.

Dr. Saad Kashem received his Ph.D. from Swinburne University of Technology (SUT), Melbourne, Australia, in 2013. He received his BSc in Electrical and Electronic Engineering from East West University, Dhaka, Bangladesh, in 2009. At present, he is with Faculty of Engineering, Computing and Science in Swinburne University of Technology Sarawakak . Dr. Saad has over six years experience in both industry and academia. His major areas of expertise and research are Vehicle dynamic, Electric vehicle, Renewable Energy Systems, Intelligent and Autonomous Control, Robotics, Nonlinear control theory and applications. He is a Professional Member of Institution of Engineering and Technology, UK (IET), Institute of Electrical and Electronic Engineers (IEEE); IEEE Robotics and Automation Society; and International Association of Engineers (IAENG). He is editor & reviewer of many national & international reputed Journals & Conferences.

Professor Romesh Nagarajah is the Pro

fessor of Mechanical Engineering at Swinburne University of Technology. He has an Honours degree in Mechanical Engineering and Masters and Doctoral degrees in Robotics and Flexible Manufacturing Systems respectively. Professor Nagarajah has over forty years experience in both industry and academia. His current research is in the development of intelligent robot and inspection systems for a variety of applications. Over the last twenty years he has worked in collaboration with several aerospace, automotive and automotive supplier companies in developing smart inspection systems that combine a variety of sensor technologies with artificial intelligence techniques to inspect products and processes. Professor Nagarajah and members of his research group have several international patents. He has been awarded several research grants by the Australian Research Council and various Co-operative Research Centres. Professor Nagarajah is on the editorial board of the International Journal of Advanced Manu

Reviews exhaustively the key recent research into vehicle suspension systems and electromagnetic dampers

Outlines a new modified skyhook control strategy with an adaptive gain that dictates the vehicle’s semi-active suspension system

Presents a new analytical full-vehicle model with nine degrees of freedom, which uses the new modified skyhook strategy to control the full-vehicle vibration

Date de parution :

Ouvrage de 205 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 116,04 €

Ajouter au panier

Date de parution :

Ouvrage de 205 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

158,24 €

Ajouter au panier