Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/theory-of-robot-control-1st-ed-1996-corr-2nd-printing-with-corrections-1997/canudas-de-wit/descriptif_2316879
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2316879

Theory of Robot Control, Softcover reprint of the original 1st ed. 1996 Communications and Control Engineering Series

Langue : Anglais

Coordonnateurs : Canudas de Wit Carlos, Siciliano Bruno, Bastin Georges

Couverture de l’ouvrage Theory of Robot Control
A study of the latest research results in the theory of robot control, structured so as to echo the gradual development of robot control over the last fifteen years. In three major parts, the editors deal with the modelling and control of rigid and flexible robot manipulators and mobile robots. Most of the results on rigid robot manipulators in part I are now well established, while for flexible manipulators in part II, some problems still remain unresolved. Part III deals with the control of mobile robots, a challenging area for future research. The whole is rounded off with an appendix reviewing basic definitions and the mathematical background for control theory. The particular combination of topics makes this an invaluable source of information for both graduate students and researchers.
I Rigid manipulators.- 1 Modelling and identification.- 1.1 Kinematic modelling.- 1.1.1 Direct kinematics.- 1.1.2 Inverse kinematics.- 1.1.3 Differential kinematics.- 1.2 Dynamic modelling.- 1.2.1 Lagrange formulation.- 1.2.2 Newton-Euler formulation.- 1.2.3 Model computation.- 1.3 Identification of kinematic parameters.- 1.3.1 Model for identification.- 1.3.2 Kinematic calibration.- 1.3.3 Parameter identifiability.- 1.4 Identification of dynamic parameters.- 1.4.1 Use of dynamic model.- 1.4.2 Use of energy model.- 1.5 Further reading.- References.- 2 Joint space control.- 2.1 Dynamic model properties.- 2.2 Regulation.- 2.2.1 PD control.- 2.2.2 PID control.- 2.2.3 PD control with gravity compensation.- 2.3 Tracking control.- 2.3.1 Inverse dynamics control.- 2.3.2 Lyapunov-based control.- 2.3.3 Passivity-based control.- 2.4 Robust control.- 2.4.1 Constant bounded disturbance: integral action.- 2.4.2 Model parameter uncertainty: robust control.- 2.5 Adaptive control.- 2.5.1 Adaptive gravity compensation.- 2.5.2 Adaptive inverse dynamics control.- 2.5.3 Adaptive passivity-based control.- 2.6 Further reading.- References.- 3 Task space control.- 3.1 Kinematic control.- 3.1.1 Differential kinematics inversion.- 3.1.2 Inverse kinematics algorithms.- 3.1.3 Extension to acceleration resolution.- 3.2 Direct task space control.- 3.2.1 Regulation.- 3.2.2 Tracking control.- 3.3 Further reading.- References.- 4 Motion and force control.- 4.1 Impedance control.- 4.1.1 Task space dynamic model.- 4.1.2 Inverse dynamics control.- 4.1.3 PD control.- 4.2 Parallel control.- 4.2.1 Inverse dynamics control.- 4.2.2 PID control.- 4.3 Hybrid force/motion control.- 4.3.1 Constrained dynamics.- 4.3.2 Inverse dynamics control.- 4.3.3 Hybrid task specification and control.- 4.4 Further reading.- References.- II Flexible manipulators.- 5 Elastic joints.- 5.1 Modelling.- 5.1.1 Dynamic model properties.- 5.1.2 Reduced models.- 5.1.3 Singularly perturbed model.- 5.2 Regulation.- 5.2.1 Single link.- 5.2.2 PD control using only motor variables.- 5.3 Tracking control.- 5.3.1 Static state feedback.- 5.3.2 Two-time scale control.- 5.3.3 Dynamic state feedback.- 5.3.4 Nonlinear regulation.- 5.4 Further reading.- References.- 6 Flexible links.- 6.1 Modelling of a single-link arm.- 6.1.1 Euler-Bernoulli beam equations.- 6.1.2 Constrained and unconstrained modal analysis.- 6.1.3 Finite-dimensional models.- 6.2 Modelling of multilink manipulators.- 6.2.1 Direct kinematics.- 6.2.2 Lagrangian dynamics.- 6.2.3 Dynamic model properties.- 6.3 Regulation.- 6.3.1 Joint PD control.- 6.3.2 Vibration damping control.- 6.4 Joint tracking control.- 6.4.1 Inversion control.- 6.4.2 Two-time scale control.- 6.5 End-effector tracking control.- 6.5.1 Frequency domain inversion.- 6.5.2 Nonlinear regulation.- 6.6 Further reading.- References.- III Mobile robots.- 7 Modelling and structural properties.- 7.1 Robot description.- 7.1.1 Conventional wheels.- 7.1.2 Swedish wheel.- 7.2 Restrictions on robot mobility.- 7.3 Three-wheel robots.- 7.3.1 Type (3,0) robot with Swedish wheels.- 7.3.2 Type (3,0) robot with castor wheels.- 7.3.3 Type (2,0) robot.- 7.3.4 Type (2,1) robot.- 7.3.5 Type (1,1) robot.- 7.3.6 Type (1,2) robot.- 7.4 Posture kinematic model.- 7.4.1 Generic models of wheeled robots.- 7.4.2 Mobility, steerability and manoeuvrability.- 7.4.3 Irreducibility.- 7.4.4 Controllability and stabilizability.- 7.5 Configuration kinematic model.- 7.6 Configuration dynamic model.- 7.6.1 Model derivation.- 7.6.2 Actuator configuration.- 7.7 Posture dynamic model.- 7.8 Further reading.- References.- 8 Feedback linearization.- 8.1 Feedback control problems.- 8.1.1 Posture tracking.- 8.1.2 Point tracking.- 8.1.3 Velocity and torque control.- 8.2 Static state feedback.- 8.2.1 Omnidirectional robots.- 8.2.2 Restricted mobility robots.- 8.3 Dynamic state feedback.- 8.3.1 Dynamic extension algorithm.- 8.3.2 Differential flatness.- 8.3.3 Avoiding singularities.- 8.3.4 Solving the posture tracking problem.- 8.3.5 Avoiding singularities for Type (2,0) robots.- 8.4 Further reading.- References.- 9 Nonlinear feedback control.- 9.1 Unicycle robot.- 9.1.1 Model transformations.- 9.1.2 Linear approximation.- 9.1.3 Smooth state feedback stabilization.- 9.2 Posture tracking.- 9.2.1 Linear feedback control.- 9.2.2 Nonlinear feedback control.- 9.3 Path following.- 9.3.1 Linear feedback control.- 9.3.2 Nonlinear feedback control.- 9.4 Posture stabilization.- 9.4.1 Smooth time-varying control.- 9.4.2 Piecewise continuous control.- 9.4.3 Time-varying piecewise continuous control.- 9.5 Further reading.- References.- A Control background.- A.1 Lyapunov theory.- A. 1.1 Autonomous systems.- A.1.2 Nonautonomous systems.- A.1.3 Practical stability.- A.2 Singular perturbation theory.- A.3 Differential geometry theory.- A.3.1 Normal form.- A.3.2 Feedback linearization.- A.3.3 Stabilization of feedback linearizable systems.- A.4 Input-output.- A.4.1 Function spaces and operators.- A.4.2 Passivity.- A.4.3 Robot manipulators as passive systems.- A.4.4 Kalman-Yakubovich-Popov lemma.- A.5 Further reading.- References.

The most important results from current research within a single unified framework

The result of a close co-operative project by the Zodiac, a group of twelve researchers from France, Italy and Belgium

Date de parution :

Ouvrage de 392 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 137,14 €

Ajouter au panier