Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/subcellular-biochemistry/roodyn/descriptif_3012358
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3012358

Subcellular Biochemistry, Softcover reprint of the original 1st ed. 1980 Volume 7

Langue : Anglais

Coordonnateur : Roodyn Donald B.

Couverture de l’ouvrage Subcellular Biochemistry
The broad aim of SUBCELLULAR BIOCHEMISTRY is to present an inte­ grated view of the cell in which artificial barriers between disciplines are bro­ ken down. The contents of Volume 7 illustrate the interconnections between initially unrelated fields of study and show strikingly how advances along one front become possible because of parallel successes in another. Current research into cell organelles and membrane systems is not only concerned with the elucidation of their structure and function. It also asks such questions as: Which regions of the cell are concerned in the bioassembly of the organelle? How are organelle and membrane precursors transported from the site of syn­ thesis to the newly formed cell constituent? What genetic systems control the biosynthesis and assembly of cell components and how do these systems inter­ act? How did the various cell constituents evolve? How did the genetic and biosynthetic systems making the organelles themselves evolve? The search for the answer to such questions has placed organelle biochemistry on a different level than that of the more restricted studies of the 1950s and early 1960s and promises to produce some fascinating and surprising results. Volume 7 opens with a detailed chapter by A. A. Hadjiolov on the bio­ genesis of ribosomes of eukaryotes. The general arrangement of ribosomal genes is discussed, and there is a full account of their transcription.
1 Biogenesis of Ribosomes in Eukaryotes.- 1. Introduction.- 2. Ribosomal Genes.- 2.1. Ribosomal RNA Genes.- 2.2. 5 S rRNA Genes.- 2.3. General Features.- 3. Transcription of Ribosomal RNA Genes.- 3.1. Components of the Transcription Complex.- 3.2. The Transcription Process.- 3.3. Transcription in Vitro.- 4. Processing of Primary Pre-rRNA and Preribosomes.- 4.1. Structure of Primary Pre-rRNA.- 4.2. Pre-rRNA Maturation Pathways.- 4.3. Preribosomes: Structure and Processing.- 5. Regulation.- 5.1. General Considerations.- 5.2. Transcriptional Control.- 5.3. Posttranscriptional Control.- 6. Concluding Remarks.- 7. References.- 2 The Role of Ribonucleic Acids in the Organization and Functioning of Ribosomes of E. coli.- 1. Introduction.- 2. The Secondary Structures of Ribosomal RNA in Ribosomes.- 3. Compact Folding of RNA in Ribosomal Subunits.- 4. Domain Organization of Ribosomal Subunits.- 5. Role of Ribosomal Proteins in the Organization of RNA Tertiary Structure within Ribosomal Subunits.- 6. Direct Participation of Ribosomal RNA in Ribosome Functioning.- 7. Topography of rRNA in Ribosomes.- 8. Addendum: A Preliminary Model for the Secondary Structure of 16 S Ribosomal RNA.- 9. References.- 3 Aspects of the Role of the Endoplasmic Reticulum in Protein Synthesis.- 1. Introduction.- 2. Membranes of the Endoplasmic Reticulum.- 2.1. The Composition and Structure of the Endoplasmic Reticulum Membranes.- 2.2. Functional Aspects of the Endoplasmic Reticulum.- 3. Protein Synthesis.- 3.1. Protein Synthesis by Free and Membrane-Bound Polysomes.- 3.2. Secreted Proteins May Be Synthesized Solely on Membrane-Bound Polyribosomes.- 3.3. Proteins Synthesized on Membrane-Bound and/or Free Polysomes.- 3.4. Summary.- 4. Polyribosome-Membrane Interactions.- 4.1. The Physical Nature of Binding between 60 S Subunits and Membrane.- 4.2. Interaction between Nascent Polypeptides and Membranes.- 4.3. Direct Interaction between Messenger RNA and Membranes.- 5. Heterogeneity in the Function of Rough Endoplasmic Reticulum with Respect to Protein Synthesis.- 5.1. Compartmentalization of the Synthesis of Proteins Destined for Discharge to the Extracellular Environment.- 5.2. Compartmentalization of Protein Synthesis in the Endoplasmic Reticulum and Specific Posttranslational Modifications.- 5.3. Compartmentalization of the Synthesis of Specific Proteins at Discrete Sites within the Rough Endoplasmic Reticulum.- 6. Conclusions.- 7. References.- 4 Biogenesis of Peroxisomes and Glyoxysomes.- 1. Introduction.- 2. Morphology and Topographical Relationship to Other Cellular Organdies.- 3. Biochemical Properties and Metabolic Roles.- 3.1. Liver Peroxisomes.- 3.2. Leaf Peroxisomes.- 3.3. Fatty Seed Glyoxysomes.- 4. Microbody Proliferation.- 4.1. Liver Peroxisomes.- 4.2. Leaf Peroxisomes.- 4.3. Fatty Seed Glyoxysomes.- 5. Models for the Synthesis of Microbody Components and Their Transfer to the Organelles.- 5.1. Membrane Lipids.- 5.2. Membrane Proteins.- 5.3. Implications for Microbody-Membrane Biogenesis.- 5.4. Microbody Matrix Proteins.- 5.5. Implications for Microbody Matrix Protein Segregation.- 6. The Synthesis of Microbody Components.- 6.1. Membrane Lipids.- 6.2. Membrane Proteins.- 6.3. Matrix Proteins.- 7. References.- 5 The Subcellular Biochemistry of Thyroid.- 1. Introduction.- 2. Cell Fractionation.- 2.1. Disruption and Homogenization of Thyroid Tissue.- 2.2. Localization of Marker Enzymes in Thyroid (Preliminary Studies).- 2.3. Differential Pelleting.- 2.4. Gradient Centrifugation Studies.- 2.5. Localization of Biochemical Markers (Supplementary Studies).- 3. Localization of Enzymes and Constituents in Bovine Thyroid Tissue.- 3.1. Subcellular Localization of Lipolytic Enzymes.- 3.2. Subcellular Localization of Peroxidase Activities.- 3.3. Subcellular Localization of RNA-Polymerase Activity.- 4. Isolation and Characterization of Thyroid Organelles, Subcellular Components, and Membranes.- 4.1. Nuclei.- 4.2. Mitochondria and Lysosomes.- 4.3. Golgi-Rich Fractions.- 4.4. Protein-Synthesizing Polyribosomes.- 4.5. Plasma Membranes.- 5. Summary.- 6. References.- 6 The Molecular Organization of NADH Dehydrogenase.- 1. Introduction.- 1.1. The Purpose of This Chapter.- 1.2. Definitions and Terminology.- 1.3. The Functional Unit.- 2. The Protein Components of NADH Dehydrogenase.- 2.1. Fragmentation of the Enzyme.- 2.2. Fragmentation by Treatment with Chaotropic Agents.- 2.3. Polypeptide Composition of NADH Dehydrogenase and Its Subfragments.- 3. The Protein Structure of NADH Dehydrogenase.- 3.1. General Properties of Multisubunit Enzymes.- 3.2. The Nature of Chaotropic Resolution.- 3.3. Isoelectric Points of the Constituent Polypeptides.- 3.4. Labeling with Hydrophilic Probes.- 3.5. Labeling with a Hydrophobic Probe.- 3.6. Proteolytic Digestion.- 3.7. Specific Structure/Function Relationships.- 4. The Phospholipid Components of NADH Dehydrogenase.- 4.1. Are Phospholipids Essential?.- 4.2. Phospholipid Composition of NADH Dehydrogenase.- 4.3. Phospholipid Function.- 4.4. Specific Lipid-Protein Interactions.- 5. Organization of NADH Dehydrogenase in the Membrane.- 5.1. Transmembranous Organization.- 5.2. Lateral Organization.- 6. Conclusion.- 6.1. A Model of NADH Dehydrogenase Structure.- 6.2. Prospects.- 7. References.- 7 Structure-Function Relationships of Micrococcus lysodeikticus Membranes: A Bacterial Membrane Model System.- 1. Introduction.- 2. Ultrastructure of Bacterial Membranes.- 3. Biochemical Characterization of Micrococcus lysodeikticus Membranes.- 3.1. Enzyme Distribution.- 3.2. Enzymes Involved in Wall-Polymer Biosynthesis and Peptidoglycan Metabolism.- 3.3. Lipomannan Biosynthesis.- 3.4. Enzymes Involved in Lipid Biosynthesis.- 3.5. Electron-Transport Chain Components.- 3.6. Membrane Adenosine Triphosphatase (F1-ATPase).- 4. Antigenic Architecture of the Membrane of M. Lysodeikticus.- 5. Summary and Conclusions.- 6. References.- Some Recent Books in Cell Biochemistry and Biology.- 1. Cell and Membrane Biology.- 2. Genetics and Viruses.- 4. General Biochemistry.

Date de parution :

Ouvrage de 412 p.

15.2x22.9 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 52,74 €

Ajouter au panier