Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/stellar-evolution-physics-volume-2-advanced-evolution-of-single-stars/iben/descriptif_2591611
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2591611

Stellar Evolution Physics Stellar Evolution Physics 2 Volume Hardback Set Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Stellar Evolution Physics
Describes how stars respond to microscopic physics in the advanced stages of their evolution with many numerical examples and illustrations.
This volume explains the microscopic physics operating in stars in advanced stages of their evolution and describes with many numerical examples and illustrations how they respond to this microphysics. Models of low and intermediate mass are evolved through the core helium-burning phase, the asymptotic giant branch phase (alternating shell hydrogen and helium burning) and through the final cooling white dwarf phase. A massive model is carried from the core helium-burning phase through core and shell carbon-burning phases. Gravothermal responses to nuclear reaction-induced transformations and energy loss from the surface are described in detail. Written for senior graduate students and researchers who have mastered the principles of stellar evolution, as developed in the first volume of Stellar Evolution Physics, sufficient attention is paid to how numerical solutions are obtained to enable the reader to engage in model construction on a professional level.
Volume 2: Part IV. Transport Processes, Weak Interaction Processes and Helium-Burning Reactions: 12. Diffusion and gravitational settling; 13. Heat conduction by electrons; 14. Beta decay and electron capture at high densities in stars; 15. The current-current weak interaction and the production of neutrino-antineutrino pairs; 16. Helium-burning nuclear reactions and energy-generation rates; Part V. Evolution during Helium-Burning Phases: 17. Evolution of a low mass model burning helium and hydrogen; 18. Evolution of an intermediate mass model burning helium and hydrogen; 19. Neutron production and neutron capture in a thermally pulsing asymptotic giant branch star of intermediate mass; 20. Evolution of a massive population I model during helium- and carbon-burning stages; Part VI. Terminal Evolution of Low and Intermediate Mass Stars: 21. Wind mass loss on the AGB and formation of a circumstellar envelope, evolution of the remnant as the central star of a planetary nebula, and white dwarf evolution; Index.
Icko Iben, Jr is Emeritus Distinguished Professor of Astronomy and Physics at the University of Illinois, Urbana-Champaign, where he also gained his MS and PhD degrees in Physics and where a Distinguished Lectureship in his name was established in 1998. He initiated his teaching career at Williams College (1958–1961), engaged in astrophysics research as a Senior Research Fellow at the California Institute of Technology (1961–1964), and continued his teaching career at the Massachusetts Institute of Technology (1964–1972) and the University of Illinois (1972–1999). He has held visiting Professorships at over a dozen institutions, including Harvard University, the University of California, Santa Cruz, the University of Bologna, Italy and Niigata University, Japan. He was elected to the US National Academy of Sciences in 1985 and his awards include the Russell Lectureship of the American Astronomical Society (1989), the George Darwin Lectureship (1984) and the Eddington Medal (1990) of the Royal Astronomical Society, and the Eminent Scientist Award of the Japan Society for the Promotion of Science (2003–2004).

Date de parution :

Ouvrage de 616 p.

19.3x25.2 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

Prix indicatif 105,47 €

Ajouter au panier

Thème de Stellar Evolution Physics :