Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/separation-logic-for-high-level-synthesis/winterstein-felix/descriptif_3851914
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3851914

Separation Logic for High-level Synthesis, Softcover reprint of the original 1st ed. 2017 Springer Theses Series

Langue : Anglais
Couverture de l’ouvrage Separation Logic for High-level Synthesis

This book presents novel compiler techniques, which combine a rigorous mathematical framework, novel program analyses and digital hardware design to advance current high-level synthesis tools and extend their scope beyond the industrial ?state of the art?. Implementing computation on customised digital hardware plays an increasingly important role in the quest for energy-efficient high-performance computing. Field-programmable gate arrays (FPGAs) gain efficiency by encoding the computing task into the chip?s physical circuitry and are gaining rapidly increasing importance in the processor market, especially after recent announcements of large-scale deployments in the data centre. This is driving, more than ever, the demand for higher design entry abstraction levels, such as the automatic circuit synthesis from high-level languages (high-level synthesis). The techniques in this book apply formal reasoning to high-level synthesis in the context of demonstrably practical applications.<


1. Introduction.- 2. High-level Synthesis of Dynamic Data Structures.- 3. Background.- 4. Heap Partitioning and Parallelisation.- 5. Custom Multi-Cache Architectures.- 6. Conclusion.- Bibliography.- Appendices.
Felix Winterstein received a Master's degree in electrical engineering and information technology from RWTH Aachen University, Germany, in 2009 and received the Ph.D. degree from the Imperial College London in 2016. He is currently a research associate in the Circuits and Systems Group at the same institution. His research area is digital hardware design with an emphasis on customised, reconfigurable computing using FPGAs. His interest focuses on the automatic circuit synthesis from high-level programming languages and advanced compiler techniques to extend the scope of existing design tools in this area.
Proposes highly novel program-analysis techniques for the automatic synthesis of digital circuits from high-level programming languages Is extremely timely as the proposed techniques are useful building blocks for future programming environments targeting the tightly coupled microprocessor-field-programmable gate array (FPGA) systems arising in data centre applications Contributes to interdisciplinary research by combining theoretical computer science with practical implementations of the theory in the context of digital hardware design Shows the effectiveness of the approach in demonstrably practical applications Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 132 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 132 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Thème de Separation Logic for High-level Synthesis :