Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/seismic-design-aids-for-nonlinear-pushover-analysis-of-reinforced-concrete-and-steel-bridges/descriptif_4051732
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4051732

Seismic Design Aids for Nonlinear Pushover Analysis of Reinforced Concrete and Steel Bridges Advances in Earthquake Engineering Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Seismic Design Aids for Nonlinear Pushover Analysis of Reinforced Concrete and Steel Bridges

Nonlinear static monotonic (pushover) analysis has become a common practice in performance-based bridge seismic design. The popularity of pushover analysis is due to its ability to identify the failure modes and the design limit states of bridge piers and to provide the progressive collapse sequence of damaged bridges when subjected to major earthquakes. Seismic Design Aids for Nonlinear Pushover Analysis of Reinforced Concrete and Steel Bridges fills the need for a complete reference on pushover analysis for practicing engineers.

This technical reference covers the pushover analysis of reinforced concrete and steel bridges with confined and unconfined concrete column members of either circular or rectangular cross sections as well as steel members of standard shapes. It provides step-by-step procedures for pushover analysis with various nonlinear member stiffness formulations, including:

  • Finite segment?finite string (FSFS)
  • Finite segment?moment curvature (FSMC)
  • Axial load?moment interaction (PM)
  • Constant moment ratio (CMR)
  • Plastic hinge length (PHL)

Ranging from the simplest to the most sophisticated, the methods are suitable for engineers with varying levels of experience in nonlinear structural analysis.

The authors also provide a downloadable computer program, INSTRUCT (INelastic STRUCTural Analysis of Reinforced-Concrete and Steel Structures), that allows readers to perform their own pushover analyses. Numerous real-world examples demonstrate the accuracy of analytical prediction by comparing numerical results with full- or large-scale test results. A useful reference for researchers and engineers working in structural engineering, this book also offers an organized collection of nonlinear pushover analysis applications for students.

Overview of Seismic Design of Highway Bridges in the United States. Pushover Analysis Applications. Nonlinear Pushover Analysis Procedure. Nonlinear Bending Stiffness Matrix Formulations. Analytical Formulation for Structures. Input Data for INSTRUCT Program. Numerical Examples. Appendix A: Stiffness Matrix Formulation for Bilinear PM Method. Appendix B: Stiffness Matrix Formulation for Finite Segment. Appendix C: Unbalanced Forces of a Finite Segment. Appendix D: Nonlinear Incremental Solution Algorithms. Appendix E: Plastic Curvature Capacities and Neutral Axis Depth in Columns. Appendix F: Elastic and Inelastic Time History Analysis. Appendix G: Elastic and Inelastic Response Spectra. Appendix H: Response Spectrum Analysis of Multiple-dof System. Appendix I: Polynomial Curve Fitting. Appendix J: Plate Element Stiffness Matrix. References. Index.

Professionals and academics/researchers in structural and earthquake engineering; graduate students in Earthquake Engineering/Structural Analysis/Bridge Design.

Jeffrey Ger, PhD, PE, is the Federal Highway Administration (FHWA) Division Bridge Engineer in Florida, Puerto Rico, and U.S. Virgin Islands. His research experience has been in the field of earthquake engineering, nonlinear structural response, and building and highway bridge design. He has published more than 40 technical papers in structural engineering. Dr. Ger received the U.S. Secretary of Transportation’s Team Award in 2004 "for providing extraordinary transportation services to move food, water and shelter materials to relieve the pain and suffering by millions of victims of the 2004 Hurricanes." He provided critical support in the wake of Florida’s 2004 hurricanes, completing an emergency interstate bridge repair project 26 days ahead of schedule. In 2006, he received the FHWA Bridge Leadership Council’s Excellent Award, recognizing his outstanding customer service in carrying out the bridge program in Florida. He received the FHWA Engineer of the Year Award and an award from the National Society of Professional Engineers in 2007, and in 2008 received the Civil Engineering Academy Award from the Department of Civil Engineering at the University of Missouri-Rolla. Dr. Ger was appointed as one of the seven members of the U.S. Transportation Infrastructure Reconnaissance Team that traveled to Chile in April 2010 to assess the bridge damage condition due to the February 27, 2010, Chile earthquake.

Franklin Y. Cheng, PhD, PE, is a distinguished member (formerly honorary) of ASCE; a member of the Academy of Civil Engineers, Missouri University of Science and Technology (MST); and Curators’ Professor Emeritus of Civil Engineering at MST. He is one of the pioneers in allying computing expertise to large, complex, seismic-resistant structures. Dr. Cheng has received four honorary professorships abroad and chaired seven of his 24 National Science Foundation (NSF) delegations to various countries for research and development