Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02

Url canonique : www.lavoisier.fr/livre/autre/ripples-in-mathematics/jensen/descriptif_3087309
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3087309

Ripples in Mathematics, 2001 The Discrete Wavelet Transform

Langue : Anglais

• Commentaire

This introduction to the discrete wavelet transform and its applications is based on a novel approach to discrete wavelets called lifting. After an elementary introduction, connections of filter theory are presented, and wavelet packet transforms are defined. The time-frequency plane is used for interpretation of signals, problems with finite length signals are detailed, and MATLAB is used for examples and implementation of transforms.

1. Introduction.- 1.1 Prerequisites.- 1.2 Guide to the Book.- 1.3 Background Information.- 2. A First Example.- 2.1 The Example.- 2.2 Generalizations.- Exercises.- 3. The Discrete Wavelet Transform via Lifting.- 3.1 The First Example Again.- 3.2 Definition of Lifting.- 3.3 A Second Example.- 3.4 Lifting in General.- 3.5 DWT in General.- 3.6 Further Examples.- Exercises.- 4. Analysis of Synthetic Signals.- 4.1 The Haar Transform.- 4.2 The CDF(2,2) Transform.- Exercises.- 5. Interpretation.- 5.1 The First Example.- 5.2 Further Results on the Haar Transform.- 5.3 Interpretation of General DWT.- Exercises.- 6. Two Dimensional Transforms.- 6.1 One Scale DWT in Two Dimensions.- 6.2 Interpretation and Examples.- 6.3 A 2D Transform Based on Lifting.- Exercises.- 7. Lifting and Filters I.- 7.1 Fourier Series and the z-Transform.- 7.2 Lifting in the z-Transform Representation.- 7.3 Two Channel Filter Banks.- 7.4 Orthonormal and Biorthogonal Bases.- 7.5 Two Channel Filter Banks in the Time Domain.- 7.6 Summary of Results on Lifting and Filters.- 7.7 Properties of Orthogonal Filters.- 7.8 Some Examples.- Exercises.- 8. Wavelet Packets.- 8.1 From Wavelets to Wavelet Packets.- 8.2 Choice of Basis.- 8.3 Cost Functions.- Exercises.- 9. The Time-Frequency Plane.- 9.1 Sampling and Frequency Contents.- 9.2 Definition of the Time-Frequency Plane.- 9.3 Wavelet Packets and Frequency Contents.- 9.4 More about Time-Frequency Planes.- 9.5 More Fourier Analysis. The Spectrogram.- Exercises.- 10. Finite Signals.- 10.1 The Extent of the Boundary Problem.- 10.2 DWT in Matrix Form.- 10.3 Gram-Schmidt Boundary Filters.- 10.4 Periodization.- 10.5 Moment Preserving Boundary Filters.- Exercises.- 11. Implementation.- 11.1 Introduction to Software.- 11.2 Implementing the Haar Transform Through Lifting.- 11.3 Implementing the DWT Through Lifting.- 11.4 The Real Time Method.- 11.5 Filter Bank Implementation.- 11.6 Construction of Boundary Filters.- 11.7 Wavelet Packet Decomposition.- 11.8 Wavelet Packet Bases.- 11.9 Cost Functions.- Exercises.- 12. Lifting and Filters II.- 12.1 The Three Basic Representations.- 12.2 From Matrix to Equation Form.- 12.3 From Equation to Filter Form.- 12.4 From Filters to Lifting Steps.- 12.5 Factoring Daubechies 4 into Lifting Steps.- 12.6 Factorizing Coiflet 12 into Lifting Steps.- Exercises.- 13. Wavelets in Matlab.- 13.1 Multiresolution Analysis.- 13.2 Frequency Properties of the Wavelet Transform.- 13.3 Wavelet Packets Used for Denoising.- 13.4 Best Basis Algorithm.- 13.5 Some Commands in Uvi_Wave.- Exercises.- 14. Applications and Outlook.- 14.1 Applications.- 14.2 Outlook.- 14.3 Some Web Sites.- References.
* Based on a novel approach to discrete wavelets called lifting
* Elementary introduction
* Problems with finite length signals are treated in detail
* MATLAB is used as the computational environment for examples and implementations

Date de parution :

Ouvrage de 246 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 73,84 €

Mots-clés :

En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.
FERMER