Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/propellants-and-explosives-thermochemical-aspects-of-combustion-3rd-rev-et-updated-ed/kubota/descriptif_3157203
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3157203

Propellants and Explosives (3rd Ed.) Thermochemical Aspects of Combustion

Langue : Anglais

Auteur :

Couverture de l’ouvrage Propellants and Explosives
Propellants and Explosives

Explosives and propellants are termed energetic materials for containing considerable chemical energy which can be converted into rapid expansion. In contrast to simple burning of a fuel, explosives and propellants are self-contained and do not need external supply of oxygen via air. Since their energy content thus inherently creates the risk of accidental triggering of the explosive reaction, proper synthesis, formulation, and handling during production and use are of utmost importance for safety and necessitate specialist knowledge on energetic materials, their characteristics, handling, and applications.

Now in its third edition, the classic on the thermochemical aspects of the combustion of propellants and explosives is completely revised and updated and includes green propellants as new topic. The combustion processes of typical energetic crystalline and polymeric materials and various types of propellants and pyrolants are presented to provide an informative, generalized approach for the understanding of the combustion mechanisms of those materials. The first half of the book represents an introductory text on pyrodynamics, describing fundamental aspects of the combustion of energetic materials. The second half highlights applications of energetic materials as propellants, explosives and pyrolants with focus on phenomena occurring in rocket motors. In addition, the appendix gives a brief overview of the fundamentals of aerodynamics and heat transfer, which is a prerequisite for the study of pyrodynamics.

A detailed reference for readers interested in rocketry or explosives technology.

Preface xix

Preface to the Second Edition xxi

Preface to the First Edition xxiii

1 Foundations of Pyrodynamics 1

1.1 Heat and Pressure 1

1.1.1 First Law of Thermodynamics 1

1.1.2 Specific Heat 2

1.1.3 Entropy Change 4

1.2 Thermodynamics in a Flow Field 5

1.2.1 One-Dimensional Steady-State Flow 5

1.2.1.1 Sonic Velocity and Mach Number 5

1.2.1.2 Conservation Equations in a Flow Field 6

1.2.1.3 Stagnation Point 6

1.2.2 Formation of Shock Waves 7

1.2.3 Supersonic Nozzle Flow 10

1.3 Formation of Propulsive Forces 12

1.3.1 Momentum Change and Thrust 12

1.3.2 Rocket Propulsion 14

1.3.2.1 Thrust Coefficient 15

1.3.2.2 Characteristic Velocity 15

1.3.2.3 Specific Impulse 16

1.3.3 Gun Propulsion 17

1.3.3.1 Thermochemical Process of Gun Propulsion 17

1.3.3.2 Internal Ballistics 18

1.4 Formation of Destructive Forces 20

1.4.1 Pressure and Shock Wave 20

1.4.2 Shock Wave Propagation and Reflection in Solid Materials 21

References 21

2 Thermochemistry of Combustion 23

2.1 Generation of Heat Energy 23

2.1.1 Chemical Bond Energy 23

2.1.2 Heat of Formation and Heat of Explosion 24

2.1.3 Thermal Equilibrium 25

2.2 Adiabatic Flame Temperature 26

2.3 Chemical Reaction 31

2.3.1 Thermal Dissociation 31

2.3.2 Reaction Rate 31

2.4 Evaluation of Chemical Energy 32

2.4.1 Heats of Formation of Reactants and Products 33

2.4.2 Oxygen Balance 33

2.4.3 Thermodynamic Energy 36

References 39

3 Combustion Wave Propagation 41

3.1 Combustion Reactions 41

3.1.1 Ignition and Combustion 41

3.1.2 Premixed and Diffusion Flames 42

3.1.3 Laminar and Turbulent Flames 42

3.2 Combustion Wave of a Premixed Gas 43

3.2.1 Governing Equations for the Combustion Wave 43

3.2.2 Rankine–Hugoniot Relationships 44

3.2.3 Chapman–Jouguet Points 46

3.3 Structures of Combustion Waves 49

3.3.1 Detonation Wave 49

3.3.2 Deflagration Wave 52

3.4 Ignition Reactions 54

3.4.1 The Ignition Process 54

3.4.2 Thermal Theory of Ignition 54

3.4.3 Flammability Limit 55

3.5 Combustion Waves of Energetic Materials 56

3.5.1 Thermal Theory of Burning Rate 56

3.5.1.1 Thermal Model of Combustion Wave Structure 56

3.5.1.2 Thermal Structure in the Condensed Phase 59

3.5.1.3 Thermal Structure in the Gas Phase 59

3.5.1.4 Burning Rate Model 62

3.5.2 Flame Stand-Off Distance 64

3.5.3 Burning Rate Characteristics of Energetic Materials 66

3.5.3.1 Pressure Exponent of Burning Rate 66

3.5.3.2 Temperature Sensitivity of Burning Rate 66

3.5.4 Analysis of Temperature Sensitivity of Burning Rate 66

3.5.5 Chemical Reaction Rate in Combustion Wave 69

References 71

4 Energetics of Propellants and Explosives 73

4.1 Crystalline Materials 73

4.1.1 Physicochemical Properties of Crystalline Materials 73

4.1.2 Perchlorates 76

4.1.2.1 Ammonium Perchlorate 77

4.1.2.2 Nitronium Perchlorate 77

4.1.2.3 Potassium Perchlorate 78

4.1.3 Nitrates 78

4.1.3.1 Ammonium Nitrate 78

4.1.3.2 Potassium Nitrate and Sodium Nitrate 79

4.1.3.3 Pentaerythrol Tetranitrate 79

4.1.3.4 Triaminoguanidine Nitrate 80

4.1.4 Nitro Compounds 80

4.1.5 Nitramines 80

4.2 Polymeric Materials 82

4.2.1 Physicochemical Properties of Polymeric Materials 82

4.2.2 Nitrate Esters 82

4.2.3 Inert Polymers 84

4.2.4 Azide Polymers 87

4.2.4.1 GAP 88

4.2.4.2 BAMO 90

4.3 Classification of Propellants and Explosives 91

4.4 Formulation of Propellants 94

4.5 Nitropolymer Propellants 96

4.5.1 Single-Base Propellants 96

4.5.2 Double-Base Propellants 96

4.5.2.1 NC–NG Propellants 97

4.5.2.2 NC–TMETN Propellants 99

4.5.2.3 Nitro-Azide Polymer Propellants 99

4.5.2.4 Chemical Materials of Double-Base Propellants 100

4.6 Composite Propellants 100

4.6.1 AP Composite Propellants 101

4.6.1.1 AP–HTPB Propellants 101

4.6.1.2 AP–GAP Propellants 103

4.6.1.3 Chemical Materials of AP Composite Propellants 104

4.6.2 AN Composite Propellants 104

4.6.3 Nitramine Composite Propellants 104

4.6.4 HNF Composite Propellants 106

4.6.5 TAGN Composite Propellants 108

4.7 Composite-Modified Double-Base Propellants 108

4.7.1 AP–CMDB Propellants 110

4.7.2 Nitramine CMDB Propellants 110

4.7.3 Triple-Base Propellants 112

4.8 Black Powder 113

4.9 Formulation of Explosives 114

4.9.1 Industrial Explosives 114

4.9.1.1 ANFO Explosives 114

4.9.1.2 Slurry Explosives 114

4.9.2 Military Explosives 115

4.9.2.1 TNT-Based Explosives 115

4.9.2.2 Plastic-Bonded Explosives 115

References 116

5 Combustion of Crystalline and Polymeric Materials 119

5.1 Combustion of Crystalline Materials 119

5.1.1 Ammonium Perchlorate (AP) 119

5.1.1.1 Thermal Decomposition 119

5.1.1.2 Burning Rate 120

5.1.1.3 Combustion Wave Structure 121

5.1.2 Ammonium Nitrate (AN) 121

5.1.2.1 Thermal Decomposition 121

5.1.3 HMX 122

5.1.3.1 Thermal Decomposition 122

5.1.3.2 Burning Rate 122

5.1.3.3 Gas-Phase Reaction 123

5.1.3.4 Combustion Wave Structure and Heat Transfer 124

5.1.4 Triaminoguanidine Nitrate (TAGN) 126

5.1.4.1 Thermal Decomposition 126

5.1.4.2 Burning Rate 130

5.1.4.3 Combustion Wave Structure and Heat Transfer 130

5.1.5 ADN (Ammonium Dinitramide) 132

5.1.6 HNF (Hydrazinium Nitroformate) 134

5.2 Combustion of Polymeric Materials 135

5.2.1 Nitrate Esters 135

5.2.1.1 Decomposition of Methyl Nitrate 136

5.2.1.2 Decomposition of Ethyl Nitrate 136

5.2.1.3 Overall Decomposition Process of Nitrate Esters 137

5.2.1.4 Gas-Phase Reactions of NO2 and NO 137

5.2.2 Glycidyl Azide Polymer (GAP) 139

5.2.2.1 Thermal Decomposition and Burning Rate 139

5.2.2.2 Combustion Wave Structure 142

5.2.3 Bis-azide Methyl Oxetane (BAMO) 142

5.2.3.1 Thermal Decomposition and Burning Rate 142

5.2.3.2 Combustion Wave Structure and Heat Transfer 146

References 148

6 Combustion of Double-Base Propellants 151

6.1 Combustion of NC-NG Propellants 151

6.1.1 Burning Rate Characteristics 151

6.1.2 Combustion Wave Structure 152

6.1.2.1 Gas-Phase Reaction Zones 156

6.1.2.2 A Simplified Reaction Model in Fizz Zone 157

6.1.3 Burning Rate Model 160

6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 160

6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 160

6.1.4 Energetics of the Gas Phase and Burning Rate 162

6.1.5 Temperature Sensitivity of Burning Rate 168

6.2 Combustion of NC-TMETN Propellants 171

6.2.1 Burning Rate Characteristics 171

6.2.2 Combustion Wave Structure 173

6.3 Combustion of Nitro-Azide Propellants 173

6.3.1 Burning Rate Characteristics 173

6.3.2 Combustion Wave Structure 174

6.4 Catalyzed Double-Base Propellants 176

6.4.1 Super-Rate, Plateau, and Mesa Burning 176

6.4.2 Effects of Lead Catalysts 177

6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 177

6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions 178

6.4.3 Combustion of Catalyzed Double-Base Propellants 179

6.4.3.1 Burning Rate Characteristics 179

6.4.3.2 Reaction Mechanism in the Dark Zone 182

6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 184

6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning 184

6.4.5 LiF-Catalyzed Double-Base Propellants 187

6.4.6 Ni-Catalyzed Double-Base Propellants 189

6.4.7 Suppression of Super-Rate and Plateau Burning 191

References 193

7 Combustion of Composite Propellants 195

7.1 AP Composite Propellants 195

7.1.1 Combustion Wave Structure 195

7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 195

7.1.1.2 Burning Rate Model of Granular Diffusion Theory 199

7.1.1.3 Combustion Wave Structure of Oxidizer-Rich AP Propellants 200

7.1.2 Burning Rate Characteristics 203

7.1.2.1 Effect of AP Particle Size 203

7.1.2.2 Effect of the Binder 205

7.1.2.3 Temperature Sensitivity 208

7.1.3 Catalyzed AP Composite Propellants 210

7.1.3.1 Positive Catalysts 211

7.1.3.2 LiF Negative Catalyst 213

7.1.3.3 SrCO3 Negative Catalyst 216

7.2 Nitramine Composite Propellants 219

7.2.1 Burning Rate Characteristics 220

7.2.1.1 Effect of Nitramine Particle Size 220

7.2.1.2 Effect of Binder 220

7.2.2 Combustion Wave Structure 221

7.2.3 HMX-GAP Propellants 224

7.2.3.1 Physicochemical Properties of Propellants 224

7.2.3.2 Burning Rate and Combustion Wave Structure 224

7.2.4 Catalyzed Nitramine Composite Propellants 227

7.2.4.1 Super-Rate Burning of HMX Composite Propellants 227

7.2.4.2 Super-Rate Burning of HMX-GAP Propellants 228

7.2.4.3 LiF Catalysts for Super-Rate Burning 230

7.2.4.4 Catalyst Action of LiF on Combustion Wave 232

7.3 AP-Nitramine Composite Propellants 235

7.3.1 Theoretical Performance 235

7.3.2 Burning Rate 236

7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 236

7.3.2.2 Effect of Binder 238

7.4 TAGN-GAP Composite Propellants 241

7.4.1 Physicochemical Characteristics 241

7.4.2 Burning Rate and Combustion Wave Structure 242

7.5 AN-Azide Polymer Composite Propellants 243

7.5.1 AN-GAP Composite Propellants 243

7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 246

7.6 AP-GAP Composite Propellants 247

7.7 ADN, HNF, and HNIW Composite Propellants 249

References 250

8 Combustion of CMDB Propellants 253

8.1 Characteristics of CMDB Propellants 253

8.2 AP-CMDB Propellants 253

8.2.1 Flame Structure and Combustion Mode 253

8.2.2 Burning Rate Models 255

8.3 Nitramine-CMDB Propellants 258

8.3.1 Flame Structure and Combustion Mode 258

8.3.2 Burning Rate Characteristics 261

8.3.3 Thermal Wave Structure 262

8.3.4 Burning Rate Model 267

8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 269

8.4.1 Burning Rate Characteristics 269

8.4.2 Combustion Wave Structure 270

8.4.2.1 Flame Stand-Off Distance 270

8.4.2.2 Catalyst Activity 271

8.4.2.3 Heat Transfer at the Burning Surface 273

References 275

9 Combustion of Explosives 277

9.1 Detonation Characteristics 277

9.1.1 Detonation Velocity and Pressure 277

9.1.2 Estimation of Detonation Velocity of CHNO Explosives 279

9.1.3 Equation of State for Detonation of Explosives 280

9.2 Density and Detonation Velocity 280

9.2.1 Energetic Explosive Materials 280

9.2.2 Industrial Explosives 281

9.2.2.1 ANFO Explosives 282

9.2.2.2 Slurry and Emulsion Explosives 282

9.2.3 Military Explosives 283

9.2.3.1 TNT-Based Explosives 283

9.2.3.2 Plastic-Bonded Explosives 284

9.3 Critical Diameter 285

9.4 Applications of Detonation Phenomena 285

9.4.1 Formation of a Flat Detonation Wave 285

9.4.2 Munroe Effect 287

9.4.3 Hopkinnson Effect 288

9.4.4 Underwater Explosion 289

References 292

10 Formation of Energetic Pyrolants 293

10.1 Differentiation of Propellants, Explosives, and Pyrolants 293

10.1.1 Thermodynamic Energy of Pyrolants 294

10.1.2 Thermodynamic Properties 295

10.2 Energetics of Pyrolants 296

10.2.1 Reactants and Products 296

10.2.2 Generation of Heat and Products 297

10.3 Energetics of Elements 297

10.3.1 Physicochemical Properties of Elements 297

10.3.2 Heats of Combustion of Elements 299

10.4 Selection Criteria of Chemicals 300

10.4.1 Characteristics of Pyrolants 300

10.4.2 Physicochemical Properties of Pyrolants 304

10.4.3 Formulations of Pyrolants 306

10.5 Oxidizer Components 309

10.5.1 Metallic Crystalline Oxidizers 310

10.5.1.1 Potassium Nitrate 310

10.5.1.2 Potassium Perchlorate 311

10.5.1.3 Potassium Chlorate 311

10.5.1.4 Barium Nitrate 311

10.5.1.5 Barium Chlorate 311

10.5.1.6 Strontium Nitrate 312

10.5.1.7 Sodium Nitrate 312

10.5.2 Metallic Oxides 312

10.5.3 Metallic Sulfides 313

10.5.4 Fluorine Compounds 313

10.6 Fuel Components 314

10.6.1 Metallic Fuels 314

10.6.2 Nonmetallic Solid Fuels 316

10.6.2.1 Boron 316

10.6.2.2 Carbon 316

10.6.2.3 Silicon 317

10.6.2.4 Sulfur 317

10.6.3 Polymeric Fuels 317

10.6.3.1 Nitropolymers 317

10.6.3.2 Polymeric Azides 318

10.6.3.3 Hydrocarbon Polymers 318

10.7 Metal Azides 318

References 319

11 Combustion Propagation of Pyrolants 321

11.1 Physicochemical Structures of Combustion Waves 321

11.1.1 Thermal Decomposition and Heat Release Process 321

11.1.2 Homogeneous Pyrolants 322

11.1.3 Heterogeneous Pyrolants 322

11.1.4 Pyrolants as Igniters 323

11.2 Combustion of Metal Particles 324

11.2.1 Oxidation and Combustion Processes 325

11.2.1.1 Aluminum Particles 325

11.2.1.2 Magnesium Particles 325

11.2.1.3 Boron Particles 326

11.2.1.4 Zirconium Particles 326

11.3 Black Powder 326

11.3.1 Physicochemical Properties 326

11.3.2 Reaction Process and Burning Rate 327

11.4 Li–SF6 Pyrolants 327

11.4.1 Reactivity of Lithium 327

11.4.2 Chemical Characteristics of SF6 328

11.5 Zr Pyrolants 328

11.5.1 Reactivity with BaCrO4 328

11.5.2 Reactivity with Fe2O3 329

11.6 Mg-Tf Pyrolants 329

11.6.1 Thermochemical Properties and Energetics 329

11.6.2 Reactivity of Mg and Tf 331

11.6.3 Burning Rate Characteristics 331

11.6.4 Combustion Wave Structure 334

11.7 B - KNO3 Pyrolants 336

11.7.1 Thermochemical Properties and Energetics 336

11.7.2 Burning Rate Characteristics 336

11.8 Ti - KNO3 and Zr - KNO3 Pyrolants 338

11.8.1 Oxidation Process 338

11.8.2 Burning Rate Characteristics 338

11.9 Metal-GAP Pyrolants 339

11.9.1 Flame Temperature and Combustion Products 339

11.9.2 Thermal Decomposition Process 340

11.9.3 Burning Rate Characteristics 340

11.10 Ti-C Pyrolants 341

11.10.1 Thermochemical Properties of Titanium and Carbon 341

11.10.2 Reactivity of Tf with Ti-C Pyrolants 341

11.10.3 Burning Rate Characteristics 342

11.11 NaN3 Pyrolants 342

11.11.1 Thermochemical Properties of NaN3 Pyrolants 342

11.11.2 NaN3 Pyrolant Formulations 343

11.11.3 Burning Rate Characteristics 344

11.11.4 Combustion Residue Analysis 344

11.12 GAP-AN Pyrolants 345

11.12.1 Thermochemical Characteristics 345

11.12.2 Burning Rate Characteristics 345

11.12.3 Combustion Wave Structure and Heat Transfer 345

11.13 Nitramine Pyrolants 346

11.13.1 Physicochemical Properties 346

11.13.2 Combustion Wave Structures 346

11.14 B-AP Pyrolants 347

11.14.1 Thermochemical Characteristics 347

11.14.2 Burning Rate Characteristics 348

11.14.3 Burning Rate Analysis 350

11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 352

11.15 Friction Sensitivity of Pyrolants 353

11.15.1 Definition of Friction Energy 353

11.15.2 Effect of Organic Iron and Boron Compounds 354

References 357

12 Emission from Combustion Products 359

12.1 Fundamentals of Light Emission 359

12.1.1 Nature of Light Emission 359

12.1.2 Black-Body Radiation 360

12.1.3 Emission and Absorption by Gases 361

12.2 Light Emission from Flames 362

12.2.1 Emission from Gaseous Flames 362

12.2.2 Continuous Emission from Hot Particles 362

12.2.3 Colored Light Emitters 362

12.3 Smoke Emission 363

12.3.1 Physical Smoke and Chemical Smoke 363

12.3.2 White Smoke Emitters 364

12.3.3 Black Smoke Emitters 365

12.4 Smokeless Pyrolants 366

12.4.1 Nitropolymer Pyrolants 366

12.4.2 Ammonium Nitrate Pyrolants 367

12.5 Smoke Characteristics of Pyrolants 368

12.6 Smoke and Flame Characteristics of Rocket Motors 374

12.6.1 Smokeless and Reduced Smoke 374

12.6.2 Suppression of Rocket Plume 376

12.6.2.1 Effect of Chemical Reaction Suppression 379

12.6.2.2 Effect of Nozzle Expansion 380

12.7 HCl Reduction from AP Propellants 383

12.7.1 Background of HCl Reduction 383

12.7.2 Reduction of HCl by the Formation of Metal Chlorides 385

12.8 Reduction of Infrared Emission from Combustion Products 387

12.9 Green Propellants 388

12.9.1 AN-Composite Propellants 389

12.9.2 ADN- and HNF-Composite Propellants 390

12.9.3 Nitramine Composite Propellants 390

12.9.4 TAGN-GAP Composite Propellants 391

12.9.5 NP Propellants 391

References 392

13 Transient Combustion of Propellants and Pyrolants 393

13.1 Ignition Transient 393

13.1.1 Convective and Conductive Ignition 393

13.1.2 Radiative Ignition 396

13.2 Ignition for Combustion 398

13.2.1 Description of the Ignition Process 398

13.2.2 Ignition Process 400

13.3 Erosive Burning Phenomena 402

13.3.1 Threshold Velocity 402

13.3.2 Effect of Cross-Flow 404

13.3.3 Heat Transfer through a Boundary Layer 404

13.3.4 Determination of Lenoir–Robilard Parameters 406

13.4 Combustion Instability 409

13.4.1 T Combustion Instability 409

13.4.2 L Combustion Instability 411

13.4.3 Acoustic Combustion Instability 414

13.4.3.1 Nature of Oscillatory Combustion 414

13.4.3.2 Combustion Instability Test 415

13.4.3.3 Model for Suppression of Combustion Instability 423

13.5 Combustion under Acceleration 424

13.5.1 Burning Rate Augmentation 424

13.5.2 Effect of Aluminum Particles 425

13.6 Wired Propellant Burning 426

13.6.1 Heat-Transfer Process 426

13.6.2 Burning-Rate Augmentation 428

References 432

14 Rocket Thrust Modulation 435

14.1 Combustion Phenomena in a Rocket Motor 435

14.1.1 Thrust and Burning Time 435

14.1.2 Combustion Efficiency in a Rocket Motor 437

14.1.3 Stability Criteria for a Rocket Motor 440

14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 442

14.2 Dual-Thrust Motor 444

14.2.1 Principles of a Dual-Thrust Motor 444

14.2.2 Single-Grain Dual-Thrust Motor 445

14.2.3 Dual-Grain Dual-Thrust Motor 446

14.2.3.1 Mass Generation Rate and Mass Discharge Rate 446

14.2.3.2 Determination of Design Parameters 448

14.2.4 Thrust Modulator 451

14.3 Pulse Rocket Motor 451

14.3.1 Design Concept of Pulse Motor 451

14.3.2 Operational Flight Design of Pulse Motor 452

14.3.3 Combustion Test Results of a Two-Pulse Rocket Motor 454

14.4 Erosive Burning in a Rocket Motor 455

14.4.1 Head-End Pressure 455

14.4.2 Determination of Erosive-Burning Effect 456

14.5 Nozzleless Rocket Motor 459

14.5.1 Principles of the Nozzleless Rocket Motor 459

14.5.2 Flow Characteristics in a Nozzleless Rocket 460

14.5.3 Combustion Performance Analysis 462

14.6 Gas-Hybrid Rockets 463

14.6.1 Principles of the Gas-Hybrid Rocket 463

14.6.2 Thrust and Combustion Pressure 466

14.6.3 Pyrolants Used as Gas Generators 466

References 469

15 Ducted Rocket Propulsion 471

15.1 Fundamentals of Ducted Rocket Propulsion 471

15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 471

15.1.2 Structure and Operational Process 472

15.2 Design Parameters of Ducted Rockets 473

15.2.1 Thrust and Drag 473

15.2.2 Determination of Design Parameters 474

15.2.3 Optimum Flight Envelope 475

15.2.4 Specific Impulse of Flight Mach Number 476

15.3 Performance Analysis of Ducted Rockets 477

15.3.1 Fuel-Flow System 477

15.3.1.1 Non-choked Fuel-Flow System 478

15.3.1.2 Fixed Fuel-Flow System 478

15.3.1.3 Variable Fuel-Flow System 478

15.4 Principle of the Variable Fuel-Flow Ducted Rocket 479

15.4.1 Optimization of Energy Conversion 479

15.4.2 Control of Fuel-Flow Rate 479

15.5 Energetics of Gas-Generating Pyrolants 482

15.5.1 Required Physicochemical Properties 482

15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 483

15.5.2.1 Burning Rate and Pressure Exponent 483

15.5.2.2 Wired Gas-Generating Pyrolants 484

15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 485

15.5.4 GAP Pyrolants 486

15.5.5 Metal Particles as Fuel Components 487

15.5.6 GAP-B Pyrolants 488

15.5.7 AP Composite Pyrolants 490

15.5.8 Effect of Metal Particles on Combustion Stability 490

15.6 Combustion Tests for Ducted Rockets 491

15.6.1 Combustion Test Facility 491

15.6.2 Combustion of Variable-Flow Gas Generator 493

15.6.3 Combustion Efficiency of Multiport Air Intake 497

References 500

A Appendix A: List of Abbreviations of Energetic Materials 503

B Appendix B: Mass and Heat Transfer in a Combustion Wave 505

B.1 Conservation Equations at a Steady State in a One-Dimensional Flow Field 505

B.1.1 Mass Conservation Equation 505

B.1.2 Momentum Conservation Equation 506

B.1.3 Energy Conservation Equation 506

B.1.4 Conservation Equations of Chemical Species 507

B.2 Generalized Conservation Equations at a Steady State in a Flow Field 508

C Appendix C: Shock Wave Propagation in a Two-Dimensional Flow Field 509

C.1 Oblique Shock Wave 509

C.2 Expansion Wave 513

C.3 Diamond Shock Wave 514

References 515

D Appendix D: Supersonic Air Intake 517

D.1 Compression Characteristics of Diffusers 517

D.1.1 Principles of a Diffuser 517

D.1.2 Pressure Recovery 518

D.2 Air Intake System 521

D.2.1 External Compression System 521

D.2.2 Internal Compression System 522

D.2.3 Air Intake Design 522

References 524

E Appendix E: Measurements of Burning Rate and Combustion Wave Structure 525

Index 527

Naminosuke Kubota received a Doctorate from Princeton University in 1973, majoring “Solid Propellant Combustion” and “Rocket Propulsion”. He was Director, Third Research Center (TRDI), Defense Ministry of Japan, which is responsible for aircraft and missiles.

Date de parution :

Ouvrage de 560 p.

17.5x25.2 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

176,49 €

Ajouter au panier