Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/probability-concepts-and-theory-for-engineers/schwarzlander/descriptif_2619752
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2619752

Probability concepts and theory for engineers

Langue : Anglais

Auteur :

Probability Concepts and Theory for Engineers

Harry Schwarzlander, Formerly Department of Electrical and Computer Engineering, Syracuse University, Syracuse, NY, USA

A thorough introduction to the fundamentals of probability theory

This book offers a detailed explanation of the basic models and mathematical principles used in applying probability theory to practical problems. It gives the reader a solid foundation for formulating and solving many kinds of probability problems for deriving additional results that may be needed in order to address more challenging questions, as well as for proceeding with the study of a wide variety of more advanced topics.

Great care is devoted to a clear and detailed development of the 'conceptual model" which serves as the bridge between any real-world situation and its analysis by means of the mathematics of probability. Throughout the book, this conceptual model is not lost sight of. Random variables in one and several dimensions are treated in detail, including singular random variables, transformations, characteristic functions, and sequences. Also included are special topics not covered in many probability texts, such as fuzziness, entropy, spherically symmetric random variables, and copulas.

Some special features of the book are:

  • a unique step-by-step presentation organized into 86 topical Sections, which are grouped into six Parts
  • over 200 diagrams augment and illustrate the text, which help speed the reader"s comprehension of the material
  • short answer review questions following each Section, with an answer table provided, strengthen the reader"s detailed grasp of the material contained in the Section
  • problems associated with each Section provide practice in applying the principles discussed, and in some cases extend the scope of that material
  • an online separate solutions manual is available for course tutors.

Engineering students using this text will achieve a solid understanding and confidence in applying probability theory. It is also a useful resource for self-study, and for practicing engineers and researchers who need a more thorough grasp of particular topics.

Preface.

Introduction.

Part I. The Basic Model.

Part I Introduction.

Section 1. Dealing with 'Real-World' Problems.

Section 2. The Probabilistic Experiment.

Section 3. Outcome.

Section 4. Events.

Section 5. The Connection to the Mathematical World.

Section 6. Elements and Sets.

Section 7. Classes of Sets.

Section 8. Elementary Set Operations.

Section 9. Additional Set Operations.

Section 10. Functions.

Section 11. The Size of a Set.

Section 12. Multiple and Infinite Set Operations.

Section 13. More About Additive Classes.

Section 14. Additive Set Functions.

Section 15. More about Probabilistic Experiments.

Section 16. The Probability Function.

Section 17. Probability Space.

Section 18. Simple Probability Arithmetic.

Part I Summary.

Part II. The Approach to Elementary Probability Problems.

Part II. Introduction.

Section 19. About Probability Problems.

Section 20. Equally Likely Possible Outcomes.

Section 21. Conditional Probability.

Section 22. Conditional Probability Distributions.

Section 23. Independent Events.

Section 24. Classes of Independent Events.

Section 25. Possible Outcomes Represented as Ordered k-Tuples.

Section 26. Product Experiments and Product Spaces.

Section 27. Product Probability Spaces.

Section 28. Dependence Between the Components in an Ordered k-Tuple.

Section 29. Multiple Observations Without Regard to Order.

Section 30. Unordered Sampling with Replacement.

Section 31. More Complicated Discrete Probability Problems.

Section 32. Uncertainty and Randomness.

Section 33. Fuzziness.

Part II Summary.

Part III. Introduction to Random Variables.

Part III. Introduction.

Section 34. Numerical-Valued Outcomes.

Section 35. The Binomial Distribution.

Section 36. The Real Numbers.

Section 37. General Definition of a Random Variable.

Section 38. The Cumulative Distribution Function.

Section 39. The Probability Density Function.

Section 40. The Gaussian Distribution.

Section 41. Two Discrete Random Variables.

Section 42. Two Arbitrary Random Variables.

Section 43. Two-Dimensional Distribution Functions.

Section 44. Two-Dimensional Density Functions.

Section 45. Two Statistically Independent Random Variables.

Section 46. Two Statistically Independent Random Variables-Absolutely Continuous Case.

Part III Summary.

Part IV. Transformations and Multiple Random Variables.

Part IV Introduction.

Section 47. Transformation of a Random Variable.

Section 48. Transformation of a Two-Dimensional Random Variable.

Section 49. The Sum of Two Discrete Random Variables.

Section 50. The Sum of Two Arbitrary Random Variables.

Section 51. n-Dimensional Random Variables.

Section 52. Absolutely Continuous n-Dimensional R. V.'s.

Section 53. Coordinate Transformations.

Section 54. Rotations and the Bivariate Gaussian Distribution.

Section 55. Several Statistically Independent Random Variables.

Section 56. Singular Distributions in One Dimension.

Section 57. Conditional Induced Distribution, Given an Event.

Section 58. Resolving a Distribution into Components of Pure Type.

Section 59. Conditional Distribution Given the Value of a Random Variable.

Section 60. Random Occurrences in Time.

Part IV Summary.

Part V. Parameters for...

Date de parution :

Ouvrage de 622 p.

Disponible chez l'éditeur (délai d'approvisionnement : 12 jours).

Prix indicatif 91,83 €

Ajouter au panier