Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/principles-and-applications-of-lithium-secondary-batteries/park/descriptif_2619472
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2619472

Principles and Applications of Lithium Secondary Batteries

Langue : Anglais

Coordonnateur : Park Jung-Ki

Couverture de l’ouvrage Principles and Applications of Lithium Secondary Batteries
Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energy
storage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a central
role in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development on
lithium secondary batteries.

The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineers
starting out in the field. The chapters in this book have been thoroughly edited by a collective of experts to achieve a cohesive book with a consistent style, level, and philosophy. They cover a wide range of topics, including principles and technologies of key materials such as the
cathode, anode, electrolyte, and separator. Battery technologies such as design, manufacturing processes, and evaluation methods as well as applications are addressed. In addition, analytical methods for determining electrochemical and other properties of batteries are also included.

Hence, this book is a must-have for everyone interested in obtaining all the basic information on lithium secondary batteries.

List of Contributors xi

Preface xiii

1 Introduction 1

1.1 History of Batteries 1

1.2 Development of Cell Technology 3

1.3 Overview of Lithium Secondary Batteries 3

1.4 Future of Lithium Secondary Batteries 7

References 7

2 The Basic of Battery Chemistry 9

2.1 Components of Batteries 9

2.1.1 Electrochemical Cells and Batteries 9

2.1.2 Battery Components and Electrodes 9

2.1.3 Full Cells and Half Cells 11

2.1.4 Electrochemical Reaction and Electric Potential 11

2.2 Voltage and Current of Batteries 12

2.2.1 Voltage 12

2.2.2 Current 14

2.2.3 Polarization 14

2.3 Battery Characteristics 15

2.3.1 Capacity 15

2.3.2 Energy Density 16

2.3.3 Power 16

2.3.4 Cycle Life 17

2.3.5 Discharge Curves 17

3 Materials for Lithium Secondary Batteries 21

3.1 Cathode Materials 21

3.1.1 Development History of Cathode Materials 21

3.1.2 Overview of Cathode Materials 23

3.1.2.1 Redox Reaction of Cathode Materials 23

3.1.2.2 Discharge Potential Curves 24

3.1.2.3 Demand Characteristics of Cathode Materials 26

3.1.2.4 Major Cathode Materials 27

3.1.3 Structure and Electrochemical Properties of Cathode Materials 27

3.1.3.1 Layered Structure Compounds 27

3.1.3.2 Spinel Composites 46

3.1.3.3 Olivine Composites 52

3.1.3.4 Vanadium Composites 57

3.1.4 Performance Improvement by Surface Modification 58

3.1.4.1 Layered Structure Compounds 60

3.1.4.2 Spinel Compound 61

3.1.4.3 Olivine Compounds 64

3.1.5 Thermal Stability of Cathode Materials 65

3.1.5.1 Basics of Battery Safety 65

3.1.5.2 Battery Safety and Cathode Materials 68

3.1.5.3 Thermal Stability of Cathodes 69

3.1.6 Prediction of Cathode Physical Properties and Cathode Design 75

3.1.6.1 Understanding of First-Principles Calculation 77

3.1.6.2 Prediction and Investigation of Electrode Physical Properties Using First-Principles Calculation 79

References 84

3.2 Anode Materials 89

3.2.1 Development History of Anode Materials 89

3.2.2 Overview of Anode Materials 90

3.2.3 Types and Electrochemical Characteristics of Anode Materials 91

3.2.3.1 Lithium Metal 91

3.2.3.2 Carbon Materials 92

3.2.3.3 Noncarbon Materials 118

3.2.4 Conclusions 137

References 137

3.3 Electrolytes 141

3.3.1 Liquid Electrolytes 142

3.3.1.1 Requirements of Liquid Electrolytes 142

3.3.1.2 Components of Liquid Electrolytes 143

3.3.1.3 Characteristics of Liquid Electrolytes 147

3.3.1.4 Ionic Liquids 149

3.3.1.5 Electrolyte Additives 153

3.3.1.6 Enhancement of Thermal Stability for Electrolytes 157

3.3.1.7 Development Trends of Liquid Electrolytes 161

3.3.2 Polymer Electrolytes 162

3.3.2.1 Types of Polymer Electrolytes 162

3.3.2.2 Preparation of Polymer Electrolytes 169

3.3.2.3 Characteristics of Polymer Electrolytes 171

3.3.2.4 Development Trends of Polymer Electrolytes 173

3.3.3 Separators 173

3.3.3.1 Separator Functions 173

3.3.3.2 Basic Characteristics of Separators 174

3.3.3.3 Effects of Separators on Battery Assembly 176

3.3.3.4 Oxidative Stability of Separators 176

3.3.3.5 Thermal Stability of Separators 178

3.3.3.6 Development of Separator Materials 179

3.3.3.7 Separator Manufacturing Process 180

3.3.3.8 Prospects for Separators 181

3.3.4 Binders, Conducting Agents, and Current Collectors 181

3.3.4.1 Binders 181

3.3.4.2 Conducting Agents 189

3.3.4.3 Current Collectors 191

References 192

3.4 Interfacial Reactions and Characteristics 195

3.4.1 Electrochemical Decomposition of Nonaqueous Electrolytes 195

3.4.2 SEI Formation at the Electrode Surface 200

3.4.3 Anode–Electrolyte Interfacial Reactions 203

3.4.3.1 Lithium Metal–Electrolyte Interfacial Reactions 204

3.4.3.2 Interfacial Reactions at Graphite (Carbon) 209

3.4.3.3 SEI Layer Thickness 211

3.4.3.4 Effect of Additives 212

3.4.3.5 Interfacial Reactions between a Noncarbonaceous Anode and Electrolytes 214

3.4.4 Cathode–Electrolyte Interfacial Reactions 216

3.4.4.1 Native Surface Layers of Oxide Cathode Materials 217

3.4.4.2 SEI Layers of Oxide Cathodes 218

3.4.4.3 Interfacial Reactions at Oxide Cathodes 218

3.4.4.4 Interfacial Reactions of Phosphate Cathode Materials 223

3.4.5 Current Collector–Electrolyte Interfacial Reactions 225

3.4.5.1 Native Layer of Aluminum 225

3.4.5.2 Corrosion of Aluminum 226

3.4.5.3 Formation of Passive Layers on Aluminum Surface 228

References 229

4 Electrochemical and Material Property Analysis 231

4.1 Electrochemical Analysis 231

4.1.1 Open-Circuit Voltage 231

4.1.2 Linear Sweep Voltammetry 232

4.1.3 Cyclic Voltammetry 232

4.1.4 Constant Current (Galvanostatic) Method 234

4.1.4.1 Cutoff Voltage Control 234

4.1.4.2 Constant Capacity Cutoff Control 236

4.1.5 Constant Voltage (Potentiostatic) Method 236

4.1.5.1 Constant Voltage Charging 236

4.1.5.2 Potential Stepping Test 236

4.1.6 GITT and PITT 238

4.1.6.1 Gitt 238

4.1.6.2 Pitt 239

4.1.7 AC Impedance Analysis 239

4.1.7.1 Principle 239

4.1.7.2 Equivalent Circuit Model 241

4.1.7.3 Applications in Electrode Characteristic Analysis 247

4.1.7.4 Applications in Al/LiCoO 2 /Electrolyte/Carbon/Cu Battery Analysis 249

4.1.7.5 Applications in Al/LiCoO 2 /Electrolyte/MCMB/Cu Cell Analysis 253

4.1.7.6 Relative Permittivity 254

4.1.7.7 Ionic Conductivity 256

4.1.7.8 Diffusion Coefficient 257

4.1.8 EQCM Analysis 257

References 260

4.2 Material Property Analysis 263

4.2.1 X-ray Diffraction Analysis 263

4.2.1.1 Principle of X-ray Diffraction Analysis 263

4.2.1.2 Rietveld Refinement 265

4.2.1.3 In Situ XRD 267

4.2.2 FTIR and Raman Spectroscopy 269

4.2.2.1 FTIR Spectroscopy 270

4.2.2.2 Raman Spectroscopy 275

4.2.3 Solid-State Nuclear Magnetic Resonance Spectroscopy 280

4.2.4 X-ray Photoelectron Spectroscopy (XPS) 282

4.2.5 X-ray Absorption Spectroscopy (XAS) 285

4.2.5.1 X-ray Absorption Near-Edge Structure (XANES) 287

4.2.5.2 Extended X-ray Absorption Fine Structure (EXAFS) 288

4.2.6 Transmission Electron Microscopy (TEM) 292

4.2.7 Scanning Electron Microscopy (SEM) 296

4.2.8 Atomic Force Microscopy (AFM) 300

4.2.9 Thermal Analysis 301

4.2.10 Gas Chromatography-Mass spectrometry (GC–MS) 306

4.2.11 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 311

4.2.12 Brunauer–Emmett–Teller (BET) Surface Analysis 311

References 315

5 Battery Design and Manufacturing 319

5.1 Battery Design 319

5.1.1 Battery Capacity 320

5.1.2 Electrode Potential and Battery Voltage Design 321

5.1.3 Design of Cathode/Anode Capacity Ratio 323

5.1.4 Practical Aspects of Battery Design 325

5.2 Battery Manufacturing Process 327

5.2.1 Electrode Manufacturing Process 328

5.2.1.1 Preparation of Electrode Slurry 328

5.2.1.2 Electrode Coating 329

5.2.1.3 Roll Pressing Process 330

5.2.1.4 Slitting Process 330

5.2.1.5 Vacuum Drying Process 331

5.2.2 Assembly Process 331

5.2.2.1 Winding Process 331

5.2.2.2 Jelly Roll Insertion/Cathode Tab Welding/Beading Process 332

5.2.2.3 Electrolyte Injection Process 334

5.2.2.4 Cathode Tab Welding/Crimping/X-Ray Inspection/Washing Process 334

5.2.3 Formation Process 334

5.2.3.1 Purpose of the Formation Process 334

5.2.3.2 Procedures and Functions 334

References 335

6 Battery Performance Evaluation 337

6.1 Charge and Discharge Curves of Cells 337

6.1.1 Significance of Charge and Discharge Curves 337

6.1.2 Adjustment of Charge/Discharge Curves 339

6.1.3 Overcharging and Charge/Discharge Curves 340

6.2 Cycle Life of Batteries 342

6.2.1 Significance of Cycle Life 342

6.2.2 Factors Affecting Battery Cycle Life 342

6.3 Battery Capacity 344

6.3.1 Introduction 344

6.3.2 Battery Capacity 345

6.3.3 Measurement of Battery Capacity 346

6.4 Discharge Characteristics by Discharge Rate 347

6.5 Temperature Characteristics 349

6.5.1 Low-Temperature Characteristics 349

6.5.2 High-Temperature Characteristics 350

6.6 Energy and Power Density (Gravimetric/Volumetric) 351

6.6.1 Energy Density 351

6.6.2 Power Density 351

6.7 Applications 351

6.7.1 Mobile Device Applications 352

6.7.2 Transportation 352

6.7.3 Others 353

Index 355

Jung-Ki Park is a Professor in the Department of Chemical and Biomolecular Engineering at KAIST in South Korea. He has 20 years lithium battery research experience in which area he has published over 100 papers and delivered more than 50 international invited talks. He was Director of the Advanced Secondary Batteries Education Centre supported by the Korean government (Ministry of Commerce, Industry, and Energy) from 2003 to 2009. Prof. Park is President of the Korean Electrochemical Society, a founder of the International Conference on Polymer Batteries and Fuel Cells and chairman of IMLB 2012 (International Conference on Lithium Batteries).

Date de parution :

Ouvrage de 380 p.

17.5x24.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

149,17 €

Ajouter au panier

Thème de Principles and Applications of Lithium Secondary Batteries :