Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/practical-quantum-electrodynamics/descriptif_4275693
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4275693

Practical Quantum Electrodynamics

Langue : Anglais

Auteur :

Couverture de l’ouvrage Practical Quantum Electrodynamics

Taking a heuristic approach to relativistic quantum mechanics, Practical Quantum Electrodynamics provides a complete introduction to the theory, methodologies, and calculations used for explaining the physical interaction of charged particles.

This book combines the principles of relativity and quantum theory necessary for performing the calculations of the electromagnetic scattering of electrons and positrons and the emission and absorption of photons. Beginning with an introduction of the wave equations for spin-0 and spin-1/2 particles, the author compares and contrasts the relativistic and spin effects for both types of particles. He emphasizes how the relativistic treatment of quantum mechanics and the spin-1/2 degree of freedom are necessary to describe electromagnetic interactions involving electron scattering and points out the shortfalls of the wave-equation approach to relativistic quantum mechanics. Developing the Feynman rules for quantum electrodynamics by example, the book offers an intuitive, hands-on approach for performing fundamental calculations. It also illustrates how to perform calculations that can be related to experiments such as diagrams, lifetimes, and cross sections.

Practical Quantum Electrodynamics builds a strong foundation for further studies and research in theoretical and particle physics, particularly relativistic quantum field theory or nonrelativistic many-body theory.

INTRODUCTION AND BACKGROUND: Introduction. Notation and Conventions. Lorentz Covariance. RELATIVISTIC QUANTUM MECHANICS: Klein-Gordon Equation. Dirac Equation. QUANTUM ELECTRODYNAMICS: Propagator Methods. Photons. Quantum Electrodynamic Processes. APPENDICES A: Lorentz-Invariant Flux Factor. B: Lorentz-Invariant Phase Space. C: Feynman Rules for Tree Diagrams. D: Trace Calculation Using FORM. References. Index
Professional Practice & Development
Gingrich, Douglas M.