Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/power-electronic-converters-modeling-and-control/descriptif_2847482
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2847482

Power Electronic Converters Modeling and Control, 2014 with Case Studies Advanced Textbooks in Control and Signal Processing Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Power Electronic Converters Modeling and Control

Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them.

Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models:

·        switched and averaged models;

·        small/large-signal models; and

·        time/frequency models.

The second focuses on three groups of control methods:

·        linear control approaches normally associated with power converters;

·        resonant controllers because of their significance in grid-connected applications; and

·        nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control.

Extensive case-study illustration and end-of-chapter exercises reinforce the study material.

Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.

New Challenges in Power Electronics Systems.- Part I: Modelling of Power Electronics Systems.- Introduction to Power Electronics Modelling.- Switched Model.- Classical Average Model.- Equivalent Average Generator Model.- Generalized Average Model.- Part II: Control of Power Electronics Systems.- General Principles.- Linear Approach.- Linear Control Methods for Grid-connected Converters.- General Overview of Nonlinear Control Methods.- Linearization via Feedback Control.- Stabilization Control.- Passive Control.- Variable-structure Control and Its Associated Sliding Modes.- General Conclusion.

Seddik BACHA received the title of Master of Science in Electrical Engineering from the National Polytechnic School of Algiers, Algeria (ENPA) in 1990. In 1993 he defended his Ph.D. Thesis titled “On the modelling and control of symmetric switching converters” at the Grenoble Institute of Technology (Grenoble INP) in France. He defended his HDR (“Habilitation à Diriger des Recherches”) Dissertation titled “Power Electronics Systems, Modelling and Nonlinear Control” at Grenoble INP in 1998, by proposing a generalized modelling method and a simpler approach of applying the nonlinear control to power electronics devices.

At the present Sedik BACHA is a professor at Joseph Fourier University of Grenoble, also activating within the Power Systems Group of Grenoble Electrical Engineering Laboratory (G2ELab). He has been the head of this group from 2001 up to 2012. His teaching and research interest for modelling and nonlinear control of power electronics structures dates back to 1990, marking different evolution stages and being at the present focused on power electronics control, renewable energy integration and grid energy optimisation (V2G, Smart Homes, etc.) Among the courses he teaches at the University Joseph Fourier and Grenoble INP at the present are “Power Electronics Structures” at the undergraduate level, “Power Electronics Systems Modelling” and “Power Electronics Systems Control”, both within the Master of Science in Electrical Engineering program.

Beside his involvement as a scientific manager, Professor BACHA has co-authored 3 patents, 17 book chapters, more than 200 papers on journals and international peer-reviewed conferences.

 

Iulian MUNTEANU received a B.Eng. degree in applied electronics from “Dunărea de Jos” University of Galaţi in Romania in 1996, a M.Sc. degree in instrumentation and control from Université du Havre inFrance in 1997 and a doctoral degree in automatic control from “Dunărea de Jos” University of Gal

A source of specialist teaching in the control of ubiquitous power-electronic systems Classroom tested to improve the learning experience Illustrative case studies of the most common forms of power-electronic converters explain practical points of note End-of-chapter exercises buttress newly-acquired learning Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 454 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

94,94 €

Ajouter au panier