Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/phosphate-based-cathodes-and-reduced-graphene-oxide-composite-anodes-for-energy-storage-applications/descriptif_3808278
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3808278

Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, 1st ed. 2016 Springer Theses Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications

This thesis outlines the investigation of various electrode materials for Li-ion battery (LIB) applications. Li-ion batteries are widely used in various portable electronic devices owing to their compactness, light weight, longer life, design flexibility and environment friendliness.

This work describes the detailed synthesis and structural studies of various novel phosphate based cathode materials and reduced graphene oxide (rGO) composites as anode materials. Their electrochemical characterization as electrode for LIBs has been investigated in detail. The thesis also includes a comprehensive introduction for non-specialists in this field. The research could benefit and will appeal to scientists, especially new researchers working in the field of energy storage.


Introduction.- Experimental Techniques.- Synthesis and Electrochemical Studies of a Novel MOPOF Cathode, [Li2(VO)2(C2O4)(HPO4)2].- Room Temperature Synthesis of rGO/[K2(VO)2(C2O4)(HPO4)2] for Greener and Cheaper Lithium ion Batteries.- Single Source Precursor Route to Carbon Coated Li3V2(PO4)3 for Cathode and Anode Applications in Lithium ion Batteries.- Synthesis and Electrochemical Studies of a Metastable, Layered Phosphate αI-LiVOPO4.- Single Source Precursor Route to rGO/Sb2S3 nanocomposites for Lithium ion Battery Anodes.- Graphene Wrapped Fe3O4 Nanoparticles as Stable and High Performance Anodes for Lithium ion Batteries.- Conclusions and recommendations for future work.

Shahul Hameed Abdulrahman obtained his MSc. Degree in Chemistry from Indian Institute of Technology Delhi (IIT-Delhi), India in 2010. He obtained Ph.D. in the field of rechargeable batteries from National University of Singapore (NUS) under the supervision of Prof. Jagadese J. Vittal in 2015. He is currently working as a Post-Doctoral researcher at Qatar University in a joint research project between Korea Advanced Institute of Science and technology (KAIST), Korea and the Qatar University. His research is directed towards high energy density anode materials for Li-ion batteries.
Reviews exhaustively the key recent research into inorganic-organic hybrid cathodes for Li-ion batteries Maximizes reader insights into the role of cathodes and anodes in Li-ion batteries Includes various important characterization techniques for battery materials Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 148 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 148 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier