Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/optimization-of-power-system-operation/zhu/descriptif_3158779
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3158779

Optimization of Power System Operation

Langue : Anglais

Auteur :

Optimization of Power System Operation applies the latest applications of new technologies to power system operation and analysis, including several new and important content areas that are not covered in existing books: uncertainty analysis in power systems, steady–state security regions, optimal load shedding, and optimal reconfiguration of electric distribution networks. Power system engineers, operators, and planners will benefit from this insightful resource. It is also of great interest to advanced undergraduate and graduate students in electrical and power engineering.
Preface. 1 Introduction. 1.1 Conventional Methods. 1.2 Intelligent Search Methods. 1.3 Application of Fuzzy Set Theory. 2 Power Flow Analysis. 2.1 Mathematical Model of Power Flow. 2.2 Newton–Raphson Method. 2.3 Gauss–Seidel Method. 2.4 P–Q decoupling Method. 2.5 DC Power Flow. 3 Sensitivity Calculation. 3.1 Introduction. 3.2 Loss Sensitivity Calculation. 3.3 Calculation of Constrained Shift Sensitivity Factors. 3.4 Perturbation Method for Sensitivity Analysis. 3.5 Voltage Sensitivity Analysis. 3.6 Real–Time Application of Sensitivity Factors. 3.7 Simulation Results. 3.8 Conclusion. 4 Classic Economic Dispatch. 4.1 Introduction. 4.2 Input–Output Characteristic of Generator Units. 4.3 Thermal System Economic Dispatch Neglecting Network Losses. 4.4 Calculation of Incremental Power Losses. 4.5 Thermal System Economic Dispatch with Network Losses. 4.6 Hydrothermal System Economic Dispatch. 4.7 Economic Dispatch by Gradient Method. 4.8 Classic Economic Dispatch by Genetic Algorithm. 4.9 Classic Economic Dispatch by Hopfi eld Neural Network. 5 Security–Constrained Economic Dispatch. 5.1 Introduction. 5.2 Linear Programming Method. 5.3 Quadratic Programming Method. 5.4 Network Flow Programming Method. 5.5 Nonlinear Convex Network Flow Programming Method. 5.6 Two–Stage Economic Dispatch Approach. 5.7 Security–Constrained ED by Genetic Algorithms. 6 Multiarea System Economic Dispatch. 6.1 Introduction. 6.2 Economy of Multiarea Interconnection. 6.3 Wheeling. 6.4 Multiarea Wheeling. 6.5 MAED Solved by Nonlinear Convex Network Flow Programming. 6.6 Nonlinear Optimization Neural Network Approach. 6.7 Total Transfer Capability Computation in Multiareas. 7 Unit Commitment. 7.1 Introduction. 7.2 Priority Method. 7.3 Dynamic Programming Method. 7.4 Lagrange Relaxation Method. 7.5 Evolutionary Programming–Based Tabu Search Method. 7.6 Particle Swarm Optimization for Unit Commitment. 7.7 Analytic Hierarchy Process. 8 Optimal Power Flow. 8.1 Introduction. 8.2 Newton Method. 8.3 Gradient Method. 8.4 Linear Programming OPF. 8.5 Modifi ed Interior Point OPF. 8.6 OPF with Phase Shifter. 8.7 Multiple–Objectives OPF. 8.8 Particle Swarm Optimization for OPF. 9 Steady–State Security Regions. 9.1 Introduction. 9.2 Security Corridors. 9.3 Traditional Expansion Method. 9.4 Enhanced Expansion Method. 9.5 Fuzzy Set and Linear Programming. 10 Reactive Power Optimization. 10.1 Introduction. 10.2 Classic Method for Reactive Power Dispatch. 10.3 Linear Programming Method of VAR Optimization. 10.4 Interior Point Method for VAR Optimization Problem. 10.5 NLONN Approach. 10.6 VAR Optimization by Evolutionary Algorithm. 10.7 VAR Optimization by Particle Swarm Optimization Algorithm. 10.8 Reactive Power Pricing Calculation. 11 Optimal Load Shedding. 11.1 Introduction. 11.2 Conventional Load Shedding. 11.3 Intelligent Load Shedding. 11.4 Formulation of Optimal Load Shedding. 11.5 Optimal Load Shedding with Network Constraints. 11.6 Optimal Load Shedding without Network Constraints. 11.7 Distributed Interruptible Load Shedding. 11.8 Undervoltage Load Shedding. 11.9 Congestion Management. 12 Optimal Reconfi guration of Electrical Distribution Network. 12.1 Introduction. 12.2 Mathematical Model of DNRC. 12.3 Heuristic Methods. 12.4 Rule–Based Comprehensive Approach. 12.5 Mixed–Integer Linear Programming Approach. 12.6 Application of GA to DNRC. 12.7 Multiobjective Evolution Programming to DNRC. 12.8 Genetic Algorithm Based on Matroid Theory. 13 Uncertainty Analysis in Power Systems. 13.1 Introduction. 13.2 Defi nition of Uncertainty. 13.3 Uncertainty Load Analysis. 13.4 Uncertainty Power Flow Analysis. 13.5 Economic Dispatch with Uncertainties. 13.6 Hydrothermal System Operation with Uncertainty. 13.7 Unit Commitment with Uncertainties. 13.8 VAR Optimization with Uncertain Reactive Load. 13.9 Probabilistic Optimal Power Flow. 13.10 Comparison of Deterministic and Probabilistic Methods. Author Biography. Index.

Date de parution :

Sous réserve de disponibilité chez l'éditeur.

Prix indicatif 195,84 €

Ajouter au panier