Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/optimal-control-with-aerospace-applications/descriptif_2832002
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2832002

Optimal Control with Aerospace Applications, Softcover reprint of the original 1st ed. 2014 Space Technology Library Series, Vol. 32

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Optimal Control with Aerospace Applications
 Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration.
Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further! 
Acknowledgments.- Preface.- Chapter One: Parameter Optimization.- Chapter Two: Optimal Control Theory.- Chapter Three: The Euler-Lagrange Theorem.- Chapter Four: Application of the Euler-Lagrange Theorem.- Chapter Five: The Weierstrass Condition.- Chapter Six: The Minimum Principle.- Chapter Seven: Some Applications.- Chapter Eight: Weierstrass-Erdmann Corner Conditions.- Chapter Nine: Bounded Control Problems.- Chapter Ten: General Theory of Optimal Rocket Trajectories.- Appendices.- Bibliography.
 Professor Longuski has published over 200 conference and journal articles in the area of astrodynamics on topics that involve designing spacecraft trajectories that explore the Solar System and a new idea to test Einstein's General Theory of Relativity. He also coauthored several papers with Dr. Buzz Aldrin on a human Earth-to-Mars transportation system, known as the “Aldrin Cycler.” He has published two other books, Advice to Rocket Scientists (AIAA, 2004) and The Seven Secrets of How to Think Like a Rocket Scientist (Springer, 2007). In 2008 Professor Longuski was inducted into Purdue University's Book of Great Teachers.
Dr.  José J .Guzmán obtained his Aeronautical and Astronautical Engineering BS, MS, and PhD degrees from Purdue University. He joined a.i. solutions in 2001 and was a member of NASA's Wilkinson Microwave Anisotropy Probe (WMAP) trajectory design and maneuver team. From 2004 to 2009 Dr. Guzmán was a senior member of the technical staff at The Johns Hopkins University Applied Physics Laboratory (APL).  At APL he worked on the trajectory design and analysis team for the Solar TErrestrial RElations Observatory (STEREO) mission. He was a coauthor on a paper, “STEREO Trajectory and Maneuver Design,” which won the 2009 Walter G. Berl Award for Outstanding Paper in the APL Technical Digest. Dr. Guzmán is currently a principal senior engineer at Orbital Sciences, where he has been working on the mission design and planning for cargo missions to the International Space Station. He is a member of the American Astronautical Society and a senior member of the American Institute of Aeronautics and Astronautics. Dr. Guzmán has served as a lecturer at The Johns Hopkins University and the Virginia Polytechnic Institute and State University.
Professor John Prussing received his SB, SM, and ScD degrees in aerospace engineering from MIT, culminating in his 1967 doctoral thesis, “Optimal Multiple-Impulse Orbital Rendezvous.” He accepted a postdoctoral posi

Begins from scratch to introduce the elementary computational techniques of optimal control in aerospace engineering

Includes concrete examples to demonstrate theories in a way that is understandable to students and researchers in engineering, science, and applied mathematics

Authored by experts in the field and based on over seventy years of collective experience in their careers

Includes supplementary material: sn.pub/extras

Request lecturer material: sn.pub/lecturer-material

Date de parution :

Ouvrage de 273 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 63,29 €

Ajouter au panier

Date de parution :

Ouvrage de 273 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 89,66 €

Ajouter au panier